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Much of our understanding of word meaning has been informed through studies of single words. High-
dimensional semantic space models have recently proven instrumental in elucidating connections between
words. Here we show how bigram semantic distance can yield novel insights into conceptual cohesion and
topic flow when computed over continuous language samples. For example, “Cats drink milk” is comprised
of an ordered vector of bigrams (cat-drink, drink-milk). Each of these bigrams has a unique semantic dis-
tance. These distances in turn may provide a metric of dispersion or the flow of concepts as language
unfolds. We offer an R-package (“semdistflow”) that transforms any user-specified language transcript
into a vector of ordered bigrams, appending two metrics of semantic distance to each pair. We validated
these distance metrics on a continuous stream of simulated verbal fluency data assigning predicted switch
markers between alternating semantic clusters (animals, musical instruments, fruit). We then generated
bigram distance norms on a large sample of text and demonstrated applications of the technique to a classic
work of short fiction, To Build a Fire (London, 1908). In one application, we showed that bigrams spanning
sentence boundaries are punctuated by jumps in the semantic distance. We discuss the promise of this tech-
nique for characterizing semantic processing in real-world narratives and for bridging findings at the single
word level with macroscale discourse analyses.
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Semantic memory operates both at the microscale level in repre-
senting the meanings of individual concepts and at the macroscale
level when constructing meaning between concepts (Hills &
Kenett, 2022; Kumar, 2021). Much of our understanding of concep-
tual knowledge has been informed through language-based para-
digms involving the production and/or comprehension of single
words or meticulously controlled arrays of words. This pattern is evi-
dent across a wide range of experimental tasks such as blocked
cyclic naming, semantic decision, lexical decision, priming, and pic-
ture–word interference (Binney, Ashaie, et al., 2018; Capitani et al.,
2003; Cutler, 1981; Farah &McClelland, 1991; Funnell et al., 2006;
Grossman et al., 2004; Hillis & Caramazza, 1991; Hodges et al.,

1996; Kousta et al., 2011; Lupker, 1979; Pexman et al., 2017;
Warrington, 1975; Woollams et al., 2008). Advantages gained in
experimental control can, however, come at a cost to ecological
validity. People do not communicate using single words.
Language is an emergent system whose elements often combine in
nonlinear and unpredictableways to conveymeaning at different lev-
els of discourse (Marelli et al., 2017; Price et al., 2015,Westerlund&
Pylkkänen, 2014).

Techniques leveraged from natural language processing have
recently facilitated more widespread use of connected discourse
(e.g., storybooks, podcasts, corpora) in studies of semantic process-
ing (Baldassano et al., 2017; Deniz et al., 2019; Günther et al., 2019;
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Hartung et al., 2020; Huth et al., 2016; Jain & Huth, 2018; Johnson
et al., 2022; Kumar, 2021; Kumar et al., 2022; Mandera et al., 2015,
2017; Nastase et al., 2020; Popham et al., 2021). A key advantage of
such approaches is their capacity to extract distributional statistics
(e.g., patterns of co-occurrence) about language by indexing vast
numbers of words appearing in real-world corpora (Baldassano et
al., 2017; de Heer et al., 2017; Hartung et al., 2020; Huth et al.,
2012; Jain & Huth, 2018; Naselaris et al., 2011; Popham et al.,
2021; Simony et al., 2016) to construct high-dimensional models
of word meaning. Such models have fueled numerous recent
advances across a wide range of psychological and linguistic sci-
ences (Beaty et al., 2021; Beaty & Johnson, 2021; Gray et al.,
2019; Hills & Kenett, 2022; Johnson et al., 2022; Kenett, 2018,
2019; Kenett et al., 2017; Kumar et al., 2020; Olson et al., 2021),
as well as within computational, clinical, and cognitive neuroscience
(Anderson et al., 2019; Fernandino et al., 2016, 2022, Fu et al., 2023;
Kenett & Faust, 2019).

What Is Semantic Distance?

Semantic distance reflects the similarity (or dissimilarity) between
two or more concepts distributed across an n-dimensional space, typ-
ically derived from analyzing large corpora of texts (Günther et al.,
2019). There is no upward limit to the number of potential dimen-
sions that comprise a semantic space. A researcher with an interest
in the arousal of curse words, for example, might quantify differ-
ences in the arousal ratings of curse words versus neutral words
(e.g., Reilly et al., 2020). In this simple example, arousal constitutes
a one-dimensional semantic space.
Semantic distance is a relative rather than an absolute construct.

That is, semantic distance can only be interpreted relative to the
unique semantic space used to derive that measure. Cognitive
(neuro)scientists are typically interested in constructing semantic
spaces that are psychologically and/or neurobiologically plausible
(Binder et al., 2016; Crutch et al., 2013; Reilly, Finley, et al.,
2021; Sacchett & Humphreys, 1992). An existential challenge for
semantic space models is that the true dimensionality of human
semantic memory is latent. My semantic network is qualitatively dif-
ferent than yours, and any viable model of semantic memory must
have the flexibility to accommodate these differences (Kumar,
2021).
Two broad classes of semantic space models have risen to prom-

inence over the past decade. Experiential models classify concepts
along subjectively experienced dimensions (e.g., color, shape),
such that words with similar characteristics are more semantically
linked. In contrast, word embedding models are predicated upon
the idea that in natural language, words that occur together are likely
to be semantically related. Both models approach the challenge of
specifying dimensionality in fundamentally different ways. In the
following sections, we describe both types of models and how
they capture meaning through multidimensional vectors.

Experiential Semantic Models

A core assumption underlying all semantic space models is that
wordmeaning can be decomposed into numerous dimensions or fea-
tures (for early iterations of feature-based approaches see Cree &
McRae, 2003; Rosch, 1973). In experiential models, raters are typ-
ically asked to explicitly rate the salience of many target words

across numerous orthogonalized dimensions. For example, a
researcher might ask people to rate the salience of artichokes on
color, visual imagery, and aggression. These ratings rely on our
own subjective experience and as such, have been termed experien-
tial (Binder et al., 2016; see also Wingfield & Connell, 2022).
Binder et al. (2016) have proposed perhaps the most extensive expe-
riential model to date, characterizing words along 65 sensorimotor,
affective, and interoceptive dimensions. In an earlier model known
as the Abstract Conceptual Feature space, Crutch et al. characterized
English words along 12 dimensions (Crutch et al., 2013; Reilly et al.,
2016; Troche et al., 2017). Both the Binder et al. (2016) and Crutch
et al. (2013) experiential models tend to produce clusters that mirror
classic Linnaean taxonomies. That is, similarities in color, sound,
valence, danger, body morphology, and other traits form constella-
tions of intercorrelated features that bound natural categories (see
also Cree & McRae, 2003; Garrard et al., 2001; McRae et al.,
1999; Rogers et al., 2004). In an experiential semantic space, dogs
and wolves have similar vector representations since they highly
overlap in shape, color, sound, and other characteristics. However,
experiential models do not typically account for contextual or the-
matic relatedness predicated upon co-occurrence. For this type of
semantic relation, we turn to word embedding models, which quan-
tify regularities in the linguistic contexts in which words co-occur
(i.e., are embedded).

Word Embeddings, Context, and Co-Occurrence

In contrast to experiential semantic models, embedding models
capture semantic similarity based on shared environments. For exam-
ple, dogs, collars, bones, frisbees, and leashes are all semantically
bound via shared contexts. We learn through repeated exposure that
the conditional probability of encountering a collar in the context of
a dog is high. Common word embedding models such as LSA
(Landauer & Dumais, 1997), Word2Vec (Mikolov et al., 2013),
Global Vectors for Word Representation (GloVe; Pennington et al.,
2014), ELMo (Peters et al., 2017), BERT (Devlin et al., 2018), and
GPT-3 (Brown et al., 2020) attempt to capture this co-occurrence in
language by modeling abstract vector representations such that
words that co-occur more frequently have more similar vector repre-
sentations.1 In embedding models, dogs and collars are thus closely
linked (with similar vector representations), whereas dogs and platy-
puses, which do not frequently co-occur, have more dissimilar vector
representations. Yet dogs and platypuses share many features (e.g.,
both are mammals), and thus are likely to share similar experiential
semantic vector representations.

Word embeddings are typically derived through machine learning
algorithms that require no subjective human judgments. Such mod-
els are typically trained on vast language corpora (i.e., collections of
structured text such as books, newscasts, transcribed podcasts, or
Twitter feeds). The outcome of this process is that each discrete
token (e.g., word, n-gram, phrase) in a training corpus is character-
ized by a multidimensional array. However, unlike the labeled
dimensions that comprise experiential semantic models, the

1Many contemporary transformer models (e.g., BERT, GPT-3) use a com-
bination of lexical co-occurrence and deep learning to extract semantic vec-
tors. Thus, references to embedding models as “co-occurrence models” are a
misnomer.
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dimensions derived from word embeddings are abstract mathemati-
cal constructs.

Inter-Word Semantic Distance: A Continuous Bigram
Model

Semantic space models have featured prominently in many recent
language and neuroimaging studies (Binder et al., 2016; Bonner &
Epstein, 2021; Crutch et al., 2013; Marelli et al., 2017; Wingfield
& Connell, 2022). However, to our knowledge, these models
have not been applied to evaluate the flow of semantic information
in continuous language. Consider, for example, the following
sentence:

The quick brown fox jumped over the lazy dog.

After omitting closed class words (e.g., the), this sentence is com-
posed of five lemmatized bigrams, including (a) quick-brown;
(b) brown-fox; (c) fox-jump; (d) jump-lazy; and (e) lazy-dog. When
a semantic distance is assigned to each bigram, a vector of distances
emerges. This vector is technically a continuous time series reflecting
word-by-word conceptual shifts over the course of any language
sample.
Many previous studies investigating semantic distance have

employed “continuous bag of words” (or CBOW) approaches that
either abandon order information or alternatively analyze semantic
distance for paradigms where computing continuous bigram distance
would be senseless (e.g., word association). However, under a sequen-
tial bigram model, order is a critical factor reflecting the dispersion of
concepts over time. For example, a person experiencing severe mania
or deliriummight showmarkedly high semantic distance perceived by
a listener as incoherent. In contrast, low variability in the semantic dis-
tance could mark a narrowly focused, boring, or repetitive story. We
recently reported evidence of such effects using a “bag of bigrams”
approach to spoken narratives produced by people with aphasia rela-
tive to age-matched controls (Litovsky et al., 2022). Peoplewith apha-
sia showed significantly lower bigram semantic distances relative to
controls, and semantic distances correlated strongly with offline neu-
ropsychological measures of semantic memory functioning.
Our aims in the current study were to describe the development

and implementation of a freely available R-package designed to
read, clean, tokenize, and append two novel metrics of semantic dis-
tance (i.e., experiential vs. embedding) to any continuous language
sample. We derived norms for each of these semantic spaces and
conducted a validation study demonstrating how jumps in the
semantic distance can mark cluster boundaries in a continuous
stream of simulated category fluency data (i.e., blocks of musical
instruments, fruits, animals). Finally, we demonstrate several novel
applications of this continuous bigram model to a renowned work
of short fiction, To Build a Fire (London, 1908).

Method

Overview

We first derived two novel semantic spaces (experiential and
embedding) that provide the foundation for an open-source
R-package, titled “semdistflow.” This R-package reads, formats,
and then transforms any language transcript into a running vector
of pairwise semantic distances. We derived distance norms for
each semantic space, validated the spaces on a continuous vector

of alternating semantic categories, and conducted a series of simula-
tions on a work of short fiction. All scripts and data used here are
available for download and use at https://osf.io/ryhfj/.

Derivation of a Feature-Based Semantic Space
(SemDist15)

We created a 15-dimension experiential semantic space character-
izing English words across a subset of sensorimotor features from
the Lancaster Sensorimotor Norms (Lynott et al., 2020) and
social–emotional features from the AffectVec word sentiment
norms (Raji & da Melo, 2020). The Lancaster norms reflect crowd-
sourced salience ratings for 40,000 English words on a 6-point
Likert scale. AffectVec reports intensity ratings for 70,000 English
words on a 0–1 scale across 239 affective dimensions. We extracted
the following sensorimotor dimensions from the Lancaster norms:
visual, auditory, gustatory, haptic, interoceptive, olfactory, and
hand-arm. We extracted the following social-emotional dimensions
from AffectVec: excitement, surprise, happiness, fear, anger, con-
tempt, disgust, and sadness. Since these variables reflect different
ranges and measurement scales, we z-transformed each individual
dimension relative to its own mean and standard deviation. These
procedures yielded a vector of z-scores reflecting the salience of
each word. Throughout the remainder of this article, we refer to dis-
tance norms generated from this 15-dimension semantic feature
space (hereafter SemDist15) as experiential.

Derivation of an Embedding Semantic Space

We derived an embedding space using a well-established model,
GloVe (Pennington et al., 2014), trained on documents correspond-
ing to thewritten text2 within the Corpus of Contemporary American
English (CoCA; Davies, 2009).We first split the corpus into a test set
(N= 4,273 documents) and a training set (N= 212,737 documents)
and omitted all words appearing fewer than 5 times. We then trained
the model using the text2vec R-package (Selivanov, 2020). At a
learning rate of 0.05, the embedding model converged after 22 iter-
ations resulting in a 300-dimension vector space spanning 394,115
unique words. We trimmed this large data file (2.2 Gb) by isolating
only those entries with a corresponding lemma listed in the
Subtlex-US word frequency norms (Brysbaert & New, 2009), result-
ing in 60,384 words, each characterized across 300 hyperparameters.
We hereafter refer to these embeddings as the Global Vectors of
Written Contemporary American English (GloWCA). Throughout
the remainder of this article, we refer to distance norms generated
from GloWCA as embedding.

Text Cleaning Algorithm

To apply vector representations to each word in a language sample,
we first isolated all content words and reduced them to their respective
lemma forms. This cleaning algorithm involved multiple steps (see
Table 1) followed by lemmatization of the remaining content
words. Readers are invited to inspect all individual commands by

2 In NLP research, a document is typically defined as a discrete language
sample. Examples of documents include novels, podcast transcripts, blog
entries, or transcriptions of spoken language samples. We focused on
English text and excluded all documents corresponding to spoken English
transcriptions.
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visiting the R-package vignette for “semdistflow”.3 Table 1 represents
some of the primary procedureswe implemented in this cleaning algo-
rithm. The final product of these text cleaning and formatting proce-
dures is a vector of sequential bigrams (i.e., each word paired with
the next content word in the language sample) to which we append
our experiential semantic space (SemDist15) and embedding seman-
tic space (GloWCA) distance values.

Establishing Norms for Semantic Distance

In this analysis, we calculated semantic distances in a large sample of
naturally occurring sequential bigrams relative to randomly paired words
to establish norms for semantic distance in natural language. We calcu-
lated semantic distance via the cosine similaritymeasure. Cosine is a sca-
lar value thatmeasures the similarity of twovectors’ angles. For example,
to calculate the experiential semantic distance of “quick” and “brown,”
we calculated the cosine similarity of the 15-dimensional vectors of
“quick” and “brown” represented in SemDist15. We transformed all
semantic distances by subtracting the cosine similarity from 1. This pro-
cedure constrained each semantic distance to a range between zero and
two, such that more dissimilar words were associated with greater dis-
tances, and more similar words were associated with smaller distances.
After processing the 4,273 texts in the CoCA test set using our text

cleaning algorithm, we extracted 250,000 sequential bigrams to
establish norms for semantic distances in naturally occurring lan-
guage. In this sequential model, we derived estimates of experiential
(SemDist15) and embedding (GloWCA) semantic distances. As a
comparison (random model), we yoked the initial word of each
bigram to another randomly selected word in the test set, yielding
nonsequential bigrams.

Validation Using Simulated Category Fluency Data

Semantic fluency tasks typically involve producing as many
exemplars of a given category (e.g., animals) as possible over a
fixed interval (Christensen & Kenett, 2021). People commonly
employ foraging and other search strategies such as clustering and
switching when producing a string of exemplars (Binney,
Zuckerman, et al., 2018; Troyer, 2000; Troyer et al., 1998;
Ovando-Tellez et al., 2022). For example, a category such as animals
might evoke a spontaneous clustering and switching strategy

involving house pets switching to jungle animals, marine animals,
etc. Successful verbal fluency, therefore, requires both effective
semantic search within categories, as well as fluid executive func-
tioning as needed to flexibly disengage when a particular category
has been exhausted (Ovando-Tellez et al., 2022). Verbal fluency
has accordingly emerged as one of the most common metrics of
executive and semantic processing employed in clinical
neuropsychology.

The overarching structure of semantic category fluency in terms of
alternating blocks of semantic clusters may offer a unique opportu-
nity to validate our proposed continuous bigrammodel.We reasoned
that semantic distance within semantic clusters will be low (e.g.,
dog, cat, hamster) relative to semantic distances for bigrams crossing
switch boundaries (e.g., “dog–cat—hamster | saxophone—piano–
trumpet…”). Thus, large jumps in semantic distance can potentially
delineate switches in a continuous stream of category fluency data
(for related work on segmenting fluency data using word embedding
models see Alacam et al., 2022; Lundin et al., 2022).

We first generated a vector of 7,500 continuous words composed of
alternating 10-word blocks of animals, musical instruments, and
fruits/vegetables randomly sampled with replacement from fixed
lists (see OSF for lists). This vector was, therefore, composed of
750 switches and 6,750 within cluster exemplars, providing a fixed
reference for exactly where switches occur (i.e., every 10th word),
We applied the distme() function to the unlemmatized ordered word
list, generating pairwise semantic distances for every running bigram.
We then scaled (z-scored) the resultant distributions and recoded each
running word pair as potentially either a within-category cluster
(coded as 0) or as a predicted switch between categories (coded as
1) using a threshold of z. 1. We examined concordance between
the actual distribution of switches (every 10th word) versus the pre-
dicted distribution of switches (marked by z-score distance jumps)
using a variety of signal detection metrics from the “verification”
package (NCAR - Research Applications Laboratory, 2015) of R.

To Build a Fire (Jack London, 1908)

We hypothesized that sequential bigrams as naturally occurring
within the structured text are more semantically related than random
bigrams. Semantic distance should on average be lower for sequential
bigrams relative to randomly constructed bigrams (i.e., each word in
the story paired with a random word in another database). We tested
this hypothesis in the context of To Build a Fire, a novella published
by the American author, Jack London, in 1908. This famous story
(N= 7,125 words) depicts a man hiking alone through the boreal
forest of the Yukon Territory. The man is followed by a native
dog (described as a wolf dog) unfazed by the deep snow and cold
(−75°F). The dog casually follows the man from a distance as his
attempts at self-preservation by building a fire become increasingly
desperate. The man ultimately succumbs to hypothermia, and the
story ends with the dog wandering off indifferently into the forest.

We first imported the original text into R and executed the clean-
ing algorithm described in the “Text Cleaning Algorithm” section.
We computed semantic distances for the sequential bigrams from
the original story. We then created a second random bigram vector

Table 1
Text Stripping, Vectorizing, and Global Formatting

Target
Description of global action (substitution or

omission)

Contractions Replaced/extended contractions (e.g., it’s � it is)
Letter case All text converted to lowercase
Stopwords Omitted closed class words (e.g., the, a, is) using a

custom stopword list (N= 1,104 words) modified
from the System for the Mechanical Analysis and
Retrieval of Text stopword list

Nonalphabetic
characters

Omitted all punctuation, symbols, emojis,
whitespace, and other nonalphabetic characters

Numbers Omitted all cardinal and ordinal numbers
Morphological
derivatives

Lemmatized the text to transform all words into their
corresponding dictionary entries

Note. In addition to base R, packages used in the various stages of text
preparation included TextStem (V0.1.4; Rinker, 2018a) and Textclean
(V0.9.3; Rinker, 2018b).

3 R-package at https://github.com/Reilly-ConceptsCognitionLab/
semdistflow.

REILLY, FINLEY, LITOVSKY, AND KENETT4

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://github.com/Reilly-ConceptsCognitionLab/semdistflow
https://github.com/Reilly-ConceptsCognitionLab/semdistflow
https://github.com/Reilly-ConceptsCognitionLab/semdistflow
https://github.com/Reilly-ConceptsCognitionLab/semdistflow


consisting of each lemma of To Build a Fire in its original order ran-
domly paired with an entry from the SemDist15 database. We
derived experiential and embedding semantic distances for bigrams
in both the sequential and random conditions.

Semantic Distance Across Sentence Boundaries in
To Build a Fire

Herewe tested the hypothesis that sentences constitutemicro-topics
with higher semantic relatedness (low semantic distance) within a sen-
tence than between adjacent sentences. We tested this prediction by
contrasting semantic distances (embedding and experiential) for
sequential bigrams within sentences (within condition) relative to
bigrams that broke across a sentence boundary (switch condition).
We first cleaned the text of To Build a Fire using the procedures
described in the “Text Cleaning Algorithm” section. We then coded
each bigram as either within (nonadjacent to a period) or as a switch
trial. Switch bigrams consisted of the final word of one sentence
paired with the initial word of the following sentence.

Results

Norms for Bigram Semantic Distance

Tables 2 and 3 summarize descriptive statistics for experiential
and embedding semantic distances for sequential bigrams in natu-
rally ordered text (Sequential Model) versus artificially generated
bigrams constructed via random word pairings (Random Model).
We assigned categorical ranges (“low,” “medium,” “high”) by refer-
encing the interquartile range for each condition. The first and fourth
quartiles constitute “low” and “high” distance, whereas the middle
quartiles (Q1 to Q3) reflect medium or expected distances.
Figure 1 reflects density plots for both semantic spaces

(N = 250,000 each). The distribution of bigram semantic distances
generated by the GloWCA embedding model was tightly clustered
and leptokurtic relative to the experiential semantic distance distri-
bution whose variance was over four times higher.

Category Fluency Validation

We simulated a continuous stream of category fluency data con-
sisting of 7,500 words with blocks of alternating 10-word clusters

in a fixed order (i.e., animals, musical instruments, fruits/vegeta-
bles). This “actual” time series consisted of 6,750 words within clus-
ters and 749 switches (i.e., there is no semantic distance or switch for
the final word in the series). We coded all bigrams as either within
cluster (z, 1) or as constituting a switch point between clusters
(z≥ 1) using their scaled cosine distance. Table 4 and Figure 2 rep-
resent comparisons of the predicted distribution of binary events
(switches and clusters) to the actual distribution of events. Overall
classification accuracy was similar between the experiential (semd-
ist15, 91.5%) and embedding spaces (GloWCA, 90.9%) with a
medium tetrachoric correlation (0.36) between the two predicted
time series.

Bigram Distance in To Build a Fire: Proof of Concept

Table 5 reflects semantic distances for sequential and random
bigrams in To Build a Fire. There was a very large effect of text
structure (i.e., ordered wording) on embedding-based semantic dis-
tances. That is, sequential bigrams in the original text had signifi-
cantly lower semantic distance relative to random bigram pairings
(Welch–Satterthwaite t(6,333.2)= 57.61, p, .001, Cohen’s
d = 1.41 [very large effect]). This effect of text structure was weaker
for experiential semantic distances (SemDist15) as evidenced by
a small to medium effect for sequential relative to random bigrams
(Welch–Satterthwaite t(6,381.2)= 12.57, p, .001, Cohen’s
d = 0.32 [small to medium effect]).

Figure 3 illustrates the distribution of semantic distances across all
bigrams of the original story. Note, the random bigram model
reflected the pairing of a target word in its original position within
To Build a Fire with another word randomly selected from the
SemDist15 database. The guidelines in Figure 2 reflect boundaries
for low, medium, and high distances generated in the norming
study (see Tables 2 and 3).

Semantic Distance for Bigrams Across Sentence
Boundaries in To Build a Fire

Semantic distances differed for sequential bigrams within sen-
tences (N= 5,200) relative to bigram split across sentence boundar-
ies (N= 768) across both the embedding and experiential models.
Experiential (SemDist15) distance had a mean cosine distance

Table 2
SemDist15 Experiential Bigram Distances: Norms and Ranges

Statistic Description of scale Distance band

Bigram condition

Sequential Random

M (SD) Raw cosine (−1:1) n/a 0.13 (0.42) 0.08
Rescaled reverse scored (0:2) 0.87 (0.42) 0.92 (0.42)

Min to Q1 Raw cosine (−1:1) Low 0.45 to 1.00 0.39 to 1.00
Rescaled reverse scored (0:2) 0 to 0.55 0 to 0.61

Q1 to Q2 Raw cosine (−1:1) Average 0.14 to 0.44 0.08 to 0.38
Rescaled reverse scored (0:2) 0.56 to 0.86 0.62 to 0.92

Q2 to Q3 Raw cosine (−1:1) −0.18 to 0.13 −0.76 to 0.07
Rescaled reverse scored (0:2) 0.87 to 1.18 0.93 to 1.24

Q3 to Max Raw cosine (−1:1) High −0.96 to −0.19 −0.97 to 0.75
Rescaled reverse scored (0:2) 1.19 to 1.96 1.25 to 1.97

Note. Raw cosine scores reflect the original cosine value on a−1 to 1 scalewith a cosine of 1 indicating 0 distance between two
vectors. Rescaled reverse scored (0:2) values reflect a transformation of the original cosine values first to a range between 0 and 2
and then reverse scored using the 1-observed. On this transformed scale, 0 indicates no distance (i.e., a word vs. itself), and 2
reflects the highest possible dissimilarity between two words.
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normalized from 0 to 2 (0 is identical) for within-sentence bigrams
(mean cosine distance= 0.86) relative to the between-sentence
(switch) condition (mean cosine distance= 0.80), t(487.89)=
3.09, p= .002, Cohen d= 0.18, small effect.4 Embedding
(GloWCA) distances were also slightly higher for between-sentence
bigrams (mean cosine distance= 0.85) relative to within-sentence
bigrams (mean distance= 0.82), t(451.48)= 2.7, p= .006, Cohen
d= 0.18, small effect.
We conducted a replication analysis to determine whether the

surprising finding of lower between-sentence than within-sentence
semantic distance observed in To Build a Fire would hold across a
much larger and more varied corpus.5 Using the same procedures
applied to To Build a Fire, we analyzed bigram distances across
10 novels (see Table 6) sourced primarily from Project
Gutenberg and the Harry Potter R-package (Boehmke, 2022).
These texts included a total of approximately 906,421 words and
56,675 sentences. For nine of the 10 sources, embedding-based
semantic distance was higher for bigrams crossing sentence bound-
aries relative to within-sentence bigrams. For the remaining text
(i.e., The Portrait of Dorian Gray by Oscar Wilde), distance was
lower between sentence bigrams, although this statistically signifi-
cant difference constituted a very small effect. These overall results
suggest that in most instances readers can expect to experience
small jumps in semantic distance across sentence boundaries, as
confirmed by a paired t-test on total between versus within bigram
distances (embedding-based)6 across all 10 texts, t(9)= 3.97,
p= .002. We interpret these results in the general discussion to
follow.

General Discussion

Much remains to be learned about the ways that meaning is con-
veyed in continuous language, and recent advances in natural lan-
guage processing have afforded new insights into the ways that
words combine at different scales. Here we evaluated a sequential
bigram model involving the application of two high-dimensional
semantic spaces to any continuous language sample. We developed
open-source software for computing sequential bigram distance in a
specified language sample of any length.7 We also derived semantic
distance norms that serve as a standard against which other analyses

of connected language might be gauged. In the “Category Fluency
Validation” section, we conducted a validation study demonstrating
how both semantic spaces described in this work could successfully
segment a continuous sample of simulated verbal fluency data.
Finally, in the “Bigram Distance in to Build a Fire: Proof of
Concept and Semantic Distance for Bigrams Across Sentence
Boundaries in To Build a Fire” sections, we evaluated word-to-word
semantic transitions in To Build a Fire. We discuss some of the
major findings to follow.

Semantic distance is only interpretable in relation to the unique
semantic space used to define it. For example, semantic distances
between experiential and embedding models are not directly compa-
rable. In addition, cosine values are not typically normalized, reverse-
scored, or standardized across semantic spaces. As such, when one
observes a cosine similarity value of 0.6, it is almost impossible to
determine the magnitude of this semantic distance in the absence of
a known standard. In the “Establishing Norms for Semantic
Distance” section, we described steps for establishing bigram distance
norms for experiential (SemDist15) and embedding (GloWCA)
spaces. We queried hundreds of thousands of naturally occurring
bigrams in contemporary English text relative to “synthetic” bigrams
created by random word pairings. These analyses established bounds
for low, medium, and high semantic distance which we then deployed
as reference points for the analyses of To Build a Fire.

We used the norms established in the “Establishing Norms for
Semantic Distance” section to evaluate a proof-of-concept that
bigram distance in To Build a Fire would be higher for random
bigram pairings relative to naturally ordered text, a pattern that

Table 3
GloWCA Embedding Bigram Distances: Norms and Ranges

Statistic Description of scale Distance band

Bigram condition

Sequential Random

M (SD) Raw cosine (−1:1) n/a 0.42 0.28
Rescaled reverse scored (0:2) 0.58 (0.20) 0.72 (0.22)

Min to Q1 Raw cosine (−1:1) Low 0.56 to 1.00 0.41 to 1.00
Rescaled reverse scored (0:2) 0 to 0.44 0 to 0.59

Q1 to Q2 Raw cosine (−1:1) Average 0.42 to 0.55 0.27 to 0.40
Rescaled reverse scored (0:2) 0.45 to 0.58 0.60 to 0.73

Q2 to Q3 Raw cosine (−1:1) 0.27 to 0.41 0.13 to 0.26
Rescaled reverse scored (0:2) 0.59 to 0.73 0.74 to 0.87

Q3 to Max Raw cosine (−1:1) High −0.22 to 0.26 −0.59 to 0.12
Rescaled reverse scored (0:2) 0.74 to 1.22 0.88 to 1.59

Note. Raw cosine scores reflect the original cosine value on a−1 to 1 scalewith a cosine of 1 indicating 0 distance between two
vectors. Rescaled reverse scored (0:2) values reflect a transformation of the original cosine values first to a range between 0 and 2
and then reverse scored using the 1-observed. On this transformed scale, 0 indicates no distance (i.e., a word vs. itself), and 2
reflects the highest possible dissimilarity between two words.

4 Distances scaled from the original range of −1:1 to 0:2 and reverse
scored such that 0 constitutes identical vectors and 2 is the greatest possible
distance between any pair of words.

5 This suggestion was raised by an anonymous reviewer, highlighting the
importance of replication and extension with large-scale language models.

6 There were no reliable or systematic differences in bigram distance
between and within sentences via the experiential semantic space
(SemDist15).

7 All associated code is freely available for inspection and use within the
“semdistflow” R-package. We encourage researchers to contact us for
assistance.
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was also evident in the bigram norming sample. As predicted, adja-
cent words within To Build a Fire are more semantically related than
randomly sampled bigrams within the same corpus. Relatedness
between words in running text was far stronger for embedding
(GloWCA) than experiential (SemDist15) distances, suggesting
dominance for thematic (e.g., dog-collar) relative to taxonomic
(e.g., dog-wolf) semantic relatedness in discourse.
The nature of how thematic and taxonomic semantic systems

interact during language comprehension remains one of the most
active topics in cognitive science. It has been argued that embedding
(i.e., thematic) models are also capable of recovering taxonomic
relationships (Grand et al., 2022). However, the reverse pattern
appears less likely (i.e., experiential models recovering thematic
relationships) since experiential models are more sensitive to percep-
tual than contextual similarity. Language discourse tends to unfold
in terms of thematically related content (i.e., topics) making it
more likely to encounter the word “leash” than “wolf” in proximity

of “dog.” This is not to say that taxonomic relationships are not pre-
sent or important, particularly for scientific genres such as biology or
zoology. However, our data suggest a more integral role for thematic
relationships in online language processing.

The distinction of “normal” semantic distance in relation to narrative
quality remains unclear. A narrative dominated by low semantic distance
could be perceived as repetitive or hyper-focused. In contrast, excessively
high semantic distance (i.e., each word highly unrelated to the last word)
could be perceived as analogous to “word salad” in terms of cohesion. In
our first patient-based extension of this method, Litovsky et al. (2022)
sampled hundreds of thousands of bigrams from the narratives of people
with aphasia relative to age-matched controls. This bag-of-bigrams
approach demonstrated that people with aphasia show reduced bigram
semantic distances relative to controls and that compression in semantic
distance strongly correlates with semantic ability. In the current project,
we extended this approach tomodel semantic distance across ordered dis-
course, potentially expanding the power and ecological validity of the
measure to treat conceptual drift across words as a time series.

We demonstrated several applications of this continuous
bigram approach. First, we conducted a validation study examining
whether twometrics of semantic distance could effectively mark clus-
ter boundaries in a simulated stream of verbal fluency data. Both
semantic spaces (GloWCA and SemDist15) showed higher than
90% classification accuracy, demonstrating sensitivity to
detect semantic fluctuations in continuous language output (see also
Zemla et al., 2020). Second, we tested whether bigrams spanning sen-
tence boundaries had higher semantic distances than bigrams within
sentences. We predicted that between-sentence bigrams would be
marked by a jump in semantic distance relative to within-sentence
bigrams. This is premised on the idea that sentences constitute micro-

Table 4
Accuracy of Binary Classification for Simulated Category Fluency

Statistic/Measure SemDist15 GloWCA

% Accuracy 91.5 90.9
d′ 2.02 1.86
Hit rate 93.4% 93.80%
False alarm rate 6.58% 6.20%
Odds ratio 40.66 28.66
Bias 0.96 0.98

Note. Sensitivity metrics derived from the “verification” and “psych”
packages in R.

Figure 1
Semantic Distance Density Distributions for Sequential and Random Bigrams

Note. The y-axis represents the scaled probability density for a given x-axis value xn. Probability density is calcu-
lated by subtracting the sample mean from xn and dividing by the standard deviation. The resulting value is then
plugged into the normal probability density function to obtain the probability density for xn. See the online article
for the color version of this figure.
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topics organized around thematic semantic content and that transitions
between sentences incur associated shifts in meaning.
We initially found that semantic distance was paradoxically lower

for bigrams crossing sentence boundaries in To Build a Fire.
However, a subsequent replication/extension analysis revealed that
this finding was likely idiosyncratic. A more extensive corpus anal-
ysis across several works of fiction revealed that the final content
word of one sentence and the initial content word of the next sen-
tence tend to be punctuated by a jump in semantic distance, consis-
tent with our original hypothesis. The extent to which readers and
listeners are sensitive to such jumps to facilitate online sentence pars-
ing remains unclear.

Applications and Future Directions

We envision a variety of applications to conceptualizing language
as a continuous time series fluctuating in meaning over time. This
includes the following:

(a) Causal modeling of language and physiological relations:
Converting word-to-word level changes in meaning to a
numeric time series will potentially facilitate causal model-
ing of how psycholinguistic (e.g., frequency, word length),
psychophysiological (e.g., heart rate, pupil surface area),
and neurological (e.g., evoked potentials) variables interact

Figure 2
Sensitivity and Specificity of Binary Classification of Simulated Category Fluency

Note. See the online article for the color version of this figure.
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during continuous language perception and production. For
example, changes in embedding semantic distance in a run-
ning narrative could tax cognitive control which in turn

perturbs pupil diameter and heart rate. One fruitful exten-
sion of this method will involve continuous measurement
of neural signals using techniques such as MEG or EEG
with an adequate temporal resolution to detect processes
underlying predictive coding and the interplay between
taxonomic and semantic systems during real-time language
comprehension (for recent related work see Brodbeck et al.,
2018; Kuperberg et al., 2006; Laszlo & Federmeier, 2009).

(b) Implicit detection of neurological disorders: Patterns of
impairment in natural language production (e.g., writing
samples, spoken language) have proven sensitive to detect-
ing a wide range of neurological and psychiatric disorders
(Fraser et al., 2016; Garrard et al., 2001, 2014). Automated
screening using implicit language sampling is emerging as

Table 5
Semantic Distances for To Build a Fire

Semantic space Condition N Mean distance SD

Semdist15 Sequential 3,134 0.90 0.36
Randomized 3,255 1.01 0.36

GloWCA Sequential 3,360 0.62 0.23
Randomized 3,370 0.91 0.18

Note. N=Number of bigrams, mean distance reflect cosine values
transformed to a 0–2 scale where 0 is the highest possible similarity
between two words.

Figure 3
Semantic Distances in To Build a Fire

Note. The red dashed reference lines reflect z-scores corresponding to +1.0 based on the norming procedures for
adjacencies (i.e., sequential bigrams) described in the “Norms for Bigram Semantic Distance” section. The black
dashed reference lines reflect the boundaries of Q1 and Q3 reflecting the interquartile ranges derived from the norming
study in the “Norms for Bigram Semantic Distance” section. See the online article for the color version of this figure.
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a powerful tool for the early detection of prodromal demen-
tia (Merkin et al., 2022; Song et al., 2011; Spooner et al.,
2020). We know of no algorithm that considers aberrant
semantic distance in connected language as a marker of
cognitive impairment.

(c) Norming of developmental milestones: Little is known
about the trajectory of semantic composition throughout
early language development. As children learn to narrate
written and oral stories, inter-word semantic distance
could prove sensitive to gauging the maturation of semantic
knowledge. Specifically, longitudinal changes in semantic
distance during storytelling could yield a sensitive marker
of combinatorial semantic abilities.

(d) Auto-segmenting verbal fluency data: Our validation study
demonstrates the utility of semantic distance in detecting
switches between semantic clusters without the necessity
for supervised machine learning or human intervention
(e.g., manual scoring). This algorithm may prove useful
for neuropsychology and other disciplines such as speech-
language pathology that rely on verbal fluency as part of
their core clinical assessment protocols.

(e) Evaluating how semantic distance is moderated by
part-of-speech: One of the key steps needed to refine the
proposed model is to improve sensitivity to disambiguate
grammatical class (e.g., run as a verb vs. run as a noun).
Little is currently known about how bigram semantic dis-
tance is moderated by grammatical role and how semantic
distance might contribute to thematic role assignment and
verb argument structure.

Limitations

Language is a rich symbolic modality comprised of numerous
interactive subdomains. In its current form, however, our algorithm
can only yield coarse data about how the meaning of one word
relates to its neighbor. Our processing pipeline is currently

insensitive to grammatical, pragmatic, and/or lexical ambiguity.
The program yokes each word to its single entry in one of two
lookup databases. The algorithm is agnostic to part of speech, poly-
semy, or homophony. This shortcoming undoubtedly results in error
variance that could potentially be ameliorated by part-of-speech tag-
ging or syntactic parsing. One rate limiting factor for the widespread
adoption of such techniques involves the extensive processing
resources required to parse large language samples. Such analyses
often exhaust the capacity of personal computers, requiring database
integration over high-performance clusters. As such, refinement of
the semantic algorithms proposed here will require integration of
syntactic and pragmatic information to provide a more realistic pic-
ture of combinatorial semantic processing.

Conclusions

We have proposed a continuous bigram model and open-source
toolkit for analyzing semantic transitions in natural language and
have identified numerous applications of the model to address theo-
retical and clinical questions about combinatorial semantic process-
ing. Much remains to be learned about how to best measure
conceptual shifts in language and how such variability either facili-
tates or compromises human communication. We invite researchers
to explore these tools with their own datasets.
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