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1. Introduction  

 

This chapter is focused on cognitive pupillometry, a set of methods used for 

contrasting small perturbations in the surface area of the pupil evoked by cognitive 

demands. Cognitive pupillometry historically demanded expertise in optics, 

psychophysics, and engineering. Scientists were once compelled to construct their own 

elaborate systems for presenting stimuli and measuring pupil responses using analog film 

capture with sampling rates of about five images per second. Many of these early systems 

involved jury-rigged arrays of pulleys, mirrors, winches, and bite-bars. In contrast, 

infrared eyetracking systems are capable of remote recording with sampling rates 

exceeding 1000Hz. Much of the hardware used in modern pupillometry is commercially 

available and guided by intuitive point-and-click graphical user interfaces. In addition, 

researchers now have access to a variety of open source software packages dedicated to 

automated processing and statistical analyses of pupillometry data. These advances have 

made pupillometry a widely accessible tool whose popularity has extended beyond 

esoteric corners of psychophysics to a much broader range of applied cognitive science. 

Figure 1 illustrates this trend of exponential growth in citation counts for pupillometry in 

PubMed indexed articles across the interval 1960-2020. 

 

Figure 1. PubMed Citation Counts by Year for Pupillometry-related Search Terms 
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Researchers unfamiliar with pupillometry may hold naïve biases about the 

complexity of this measurement tool. After all, pupillary data reflect the dynamics of a 

single channel fluctuating relatively slowly over time. How hard can that be? It may be 

true that collecting and analyzing raw pupillometry data is not particularly challenging. 

However, executing a valid and reliable cognitive pupillometry study is quite difficult. 

Our aims here are to introduce methodological challenges and identify solutions to 

common pitfalls in experimental design, execution, and analysis of this multifaceted 

neurobiological signal. 

 

1.1 Physiological and behavioral indices of pupillary response functions  

 The morphology of the pupil and the robustness of its response to light are well-

established markers of neurological and ocular pathology. For example, fixed and dilated 

pupils are a symptom of brainstem dysfunction incurred in severe head trauma and 

disorders of consciousness (Hoffmann et al., 2012; Jennett & Teasdale, 1977; Marmarou 

et al., 2007). Pinpoint pupils may indicate acute opiate intoxication or chemical pesticide 

exposure (Davies et al., 1975; Larson, 2008; Rengstorff, 1994; Rollins et al., 2014), and 

acute anisochoria (i.e., asymmetric pupil size) may suggest the presence of a unilateral 

brain tumor or glaucoma (Lam et al., 1987). These conditions highlight the utility of 

clinical pupillometry as a tool for inferring disease states within the eye(s) and/or the 

brain that guide differential diagnosis and medical management.1 Clinical pupillometry 

typically involves measurement of macroscale features such as the shape of the pupil or 

its responsiveness to light. Many of these characteristics are observable with the naked 

eye or using simple handheld magnification (e.g., ophthalmoscope). In the chapter to 

follow, we will describe challenges involved in measuring a far more subtle pupillary 

response.2  

Eckard Hess and James Polt (1960) introduced the English-speaking scientific 

community to a new neurophysiological response function. In this study, the authors 

filmed the pupils of six adult men and women as they viewed five photographs comprised 

of: 1) neutral landscape; 2) baby; 3) mother + baby; 4) partially nude female; 5) partially 

nude male. The remarkable finding was that small fluctuations in pupil size (assessed by 

% change) were evoked by “interest value” of the stimuli. Female participants showed 

the highest peak dilation when viewing the partially nude male photo, whereas male 

participants showed the opposite pattern. Crucially, Hess and Polt controlled illuminance 

during the experiment. This allowed the authors to isolate a response evoked by cognitive 

factors rather than light reflexes. Hess and Polt (1960) touted the far-reaching 

implications of this biological signal, and a star was born. 

 
1 For reviews of clinical pupillometry and applications see Barbur et al. (2004), Bremner (2009) 
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Throughout the latter half of the twentieth century, pupillometry research has 

gradually shifted focus from more nebulous constructs such as ‘interest level’ to better 

operationalized variables such as physiological arousal (Beatty, 1982; Bradley et al., 

2008; Nassar et al., 2012; Peysakhovich et al., 2017). We have since learned that the 

human pupil dilates in response to a vast range of cognitive and perceptual challenges, 

including memory encoding and retrieval (Goldinger & Papesh, 2012, 2013; Papesh et 

al., 2012; Papesh & Goldinger, 2015), effortful listening while perceiving speech in noise 

(Kuchinsky et al., 2014; Van Engen & McLaughlin, 2018; Zekveld et al., 2010, 2011, 

2014; Zekveld & Kramer, 2014), and difficulty manipulations during mental arithmetic 

(Causse et al., 2017). In fact, Tryon (1975) compiled a non-exhaustive list of 23 sources 

of pupil variation with the caveat that many more sources of variability lurk beneath the 

surface. 

 

1.2 Cognitive pupillometry 

Pupillometry experienced a boom throughout the latter half of the twentieth 

century. Beatty (1982) coined the term task-evoked pupillary response or TEPR as a 

descriptive label for this particular response function. Many researchers have since 

adopted this nomenclature, and ‘TEPR’ remains in common use today. Nevertheless, the 

‘TEPR’ distinction has not been met with universal acceptance. The ‘task-evoked’ 

component of the TEPR implies a discrete, exogeneous demand such as detecting a target 

word or solving a math problem. Yet, TEPR-like activation can also be observed in the 

absence of an external stimulus. Here we will collectively refer to such pupillary 

responses using the broader distinction of cognitive pupillometry. 

Within the past twenty years, many disciplines including psychophysics, 

cognitive psychology, and cognitive neuroscience adopted pupillometry as a go-to tool. 

The promise of this technique was that non-invasive measurement of the surface of the 

eye could yield a proxy measure of brain activity within noradrenergic brainstem nuclei 

such as the locus coeruleus (LC) that modulate tonic and phasic arousal (Aston-Jones & 

Cohen, 2005; Gilzenrat et al., 2010; Mathôt, 2018; Wang & Munoz, 2015). Coupling 

between the pupil and LC has previously been demonstrated within macaque using 

combinations of both invasive and non-invasive neurophysiological recording techniques 

(Aston-Jones & Cohen, 2005; Joshi et al., 2016). Recent efforts have leveraged 

multimodal human neuroimaging with simultaneous pupil recording to elucidate the 

functional architecture of the ascending arousal network (Elman et al., 2017; Murphy et 

al., 2014; Wainstein et al., 2021).  

Cognitive pupillometry experiments typically employ event-related designs 

wherein stimuli from two or more conditions are interspersed at jittered intervals. 

Consider, for example, a hypothetical experimental design where a psycholinguist wishes 

to test her hypothesis that verbs have higher processing demands than nouns in the 

context of background noise. She plans to test this hypothesis via a lexical decision 

experiment where participants hear nouns, verbs, nonwords, and filler words in the 
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context of interfering background noise as pupil size is continuously recorded. When she 

inspects the raw data, she will see a noisy, possibly non-stationary time series (i.e., rising 

or falling baselines) littered with missing and other complex artifacts. Figure 2 illustrates 

a raw pupillary time series continuously recorded from the left eye of a single subject in 

our own laboratory. In this particular example, the participant heard stimuli 

corresponding to two conditions. One condition reflected true statements about the world 

(e.g., Paris is the capitol of France.), whereas the other condition involved false 

statements about the world matched in length to the true statements (e.g., Paris is the 

capitol of Italy). Our aim in this ongoing study is to contrast pupil responses for true and 

false statements as a potential screening tool for language comprehension in severe brain 

injury. Figure 2 gives the reader a sneak peek at what raw pupillometry data look like 

sampled over a single six minute session for one participant. 3 

 

 

Figure 2. Raw single-subject data in an event-related pupillometry study   

 
Note: These data reflect a session of a single-subject raw pupil time series sampled from the 

participant’s left eye via an Eyelink 1000 Plus eyetracker (1000 Hz sampling rate). The color bar 

reflects points in the time series corresponding to event onsets within two experimental 

conditions. The experimental conditions involve true or false statements about the world versus 

the self.  

 

 
3 Raw data in pupillometry tend to approximate a hot mess (see Figure 2). 
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There is great heterogeneity across pupillometry studies as to what constitutes an 

event and how to window its subsequent pupil response. In a continuous pupillometry 

study, pupil dilation is modeled over an extended response interval such as during mental 

arithmetic (Hess & Polt, 1964; Klingner et al., 2011) or during creative problem solving 

tasks (Bradshaw, 1968; de Rooij et al., 2018). In contrast, discrete pupillometry involves 

time-locking a pupil response to an infinitesimally brief stimulus. This discrete approach 

is analogous to deconvolution techniques for analyzing hemodynamic response function 

(HRF) (Gitelman et al., 2003). In ERP and fMRI time series analyses, the stimuli are 

typically treated as delta functions. All subsequent activation is time-locked to that 

particular event onset/offset. This method has allowed researchers to develop 

mathematical basis functions for many biological signals. For example, the canonical 

HRF has a characteristic wave peaking about six seconds after event onset/offset 

followed by a slow decay to baseline after about 16 seconds (Handwerker et al., 2004).  

Much remains to be learned about the pupil response function including how its 

parameters are impacted by individual differences. However, some of its global features 

have gained mainstream acceptance as canonical in nature (Denison et al., 2020). In a 

typical pupillometry experiment, researchers contrast pupil change per unit time 

normalized to a 0mm baseline pupil size. When evoked change in pupil size (Y) is plotted 

against time (X), a canonical pupil response function bears resemblance to a time-

compressed HRF or a slightly positively skewed mountain.  

This chapter will focus primarily on optimizing study designs to evoke discrete 

pupillary response functions. Essentially, the analysis goal of cognitive pupillometry 

involves determining whether two or more composite mountains differ from each other. 

In the section to follow, we describe complexities, obstacles, and assumptions involved in 

the technical challenge of contrasting two composite mountains.  

 

1.3 The two mountain problem: A measurement metaphor 

Consider a scenario where you live on a 2-dimensional planet with two prominent 

mountain ranges. Figure 3 depicts the Ibis Range and the Hornbill Range. Mountain 

climbers flock to the Hornbill Range, whereas the Ibis Range is less frequented. Neither 

mountain range has been mapped, nor is it feasible to catalogue the entire population of 

mountains. Ibis Tourism Adventures, Inc. has hired you to substantiate their claim that 

the Ibis Range has “bigger and better” mountains than the Hornbill Range. Your budget 

for undertaking this investigation is enormous, and your client expects a full scientific 

report in six months. Where to begin? 
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Figure 3. The Two Mountain Problem 

 

 
 

You might start with a formal hypothesis test. Your null hypothesis (H0) is that 

the Ibis and Hornbill ranges do not differ. Your alternative hypothesis (H1) is that Ibis 

mountains are on average ‘bigger and better’ than Hornbill Mountains. Your next step is 

to operationally define ‘bigger and better’ in a principled manner that promotes both 

falsifiability and replication. You settle upon the following measurement parameters for 

‘bigger and better’ illustrated in Figure 4:  

 

1. Base-to-Peak Altitude: ‘Height’ of the mountain at its tallest point normalized for 

the initial altitude of the mountain (i.e., raw peak altitude minus raw initial 

altitude) (ymax).  

2. Horizontal Distance to Peak: Horizontal distance from the origin (0,0) to the point 

on the x-axis corresponding to the mountain’s peak altitude (xobs at ymax). 

3. Horizontal Distance to Baseline: Horizontal distance from the initial rise of the 

mountain (0,0) until it descends to baseline or alternatively plateaus. 

4. Average Altitude: The average ‘height’ of the mountain across all x-values 

normalized for initial starting altitude (i.e., raw peak altitude minus raw starting 

altitude).  

5. Area Under the Curve: Total approximate area of the mountain from initial rise to 

return to baseline. 

 

 

Figure 4. How to Measure a Mountain 
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  At this point in your investigation, you established a guiding hypothesis, 

operationalized an abstract construct (e.g. ‘bigger and better’), and identified a set of 

objectively measurable variables. You next devise sampling procedures that will yield 

accurate and unbiased estimates of the mountain ranges. GPS-equipped drones and 

remote submersibles are soon dispatched to the respective mountain ranges to sample 

altitude (y-axis) and global position (x-axis) at many points. Your hope is that extensive 

sampling will promote excellent source reconstruction and that your margin of 

measurement error will be small. However, these hopes are soon dashed when you learn 

of a high rate of equipment loss from winds, snow squalls, and giant squids. Your 

recovered data are punctuated by strange artifacts and missingness. What next? 

Your next step involves data cleaning with the goal of removing outliers and 

imputing missing observations. Once these preprocessing steps are compete, you are now 

prepared to statistically evaluate your original hypothesis. You run statistical tests that are 

sensitive to autocorrelation (e.g., one point on a mountain is not independent of the 

previous point) and overfitting and interpret the results. Your data processing pipeline is 

illustrated in Figure 5. 

 

Figure 5. A Data Processing Pipeline for the Two Mountain Problem 
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Despite being over 80% submerged, the Ibis Mountains have a higher base-to-

peak altitude and greater total area than Hornbill Mountains. In contrast, Hornbill 

Mountains have steeper slopes. You report these findings to your client, and your job is 

done. Cognitive pupillometry shares many similarities with the Two Mountain Problem. 

When modeled as an event-related design, researchers typically examine relative change 

in pupil size evoked by discrete events. Each event in a pupillometry experiment 

corresponds to an individual mountain in the Two Mountain Problem. Many events 

together comprise an experimental condition.  

 

1.4 Expertise and technical specialization in pupillometry 
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    The engineering challenges of pupillometry are immense. A machine must detect 

near microscopic (~0.1mm) fluctuations of a slightly oblong disk simultaneously rotating 

within an eye and translating within a head. Hess & Polt (1960) evaluated changes in 

pupil size using an analog film camera to photograph the pupil less than five times per 

second. The authors then projected the images onto a screen and manually measured their 

dimensions. Pupillometry has since evolved an ever more sophisticated suite of hardware 

and software solutions for data acquisition. In addition, a number of inspiring teams of 

researchers have independently developed comprehensive open source pupillometry 

processing pipelines such as GazeR (Geller et al., 2019), CHAP (Hershman et al., 2019), 

and pupillometryR (Forbes, 2020). Each of these programs is free, well-supported, and 

transparent with respect to their processing and artifact correction algorithms. 

Pupillometry has reached a level of sophistication where it is impractical if not 

impossible to master all of the nuances of the constituent processes (e.g., digital signal 

processing, optics, artifact detection). The good news is that you don’t have to. 

Inexpensive eyetracking hardware, supportive user communities, and open source 

software have made pupillometry a widely accessible tool. Nevertheless, the benefits of 

automation are counterbalanced by a number of pitfalls. There are a great many ways to 

conduct a ‘bad’ pupillometry study (Loewenfeld & Lowenstein, 1993), even with 

advanced measurement and automated processing tools. Pupillometry is a methodological 

minefield with project-sinking danger at all stages from design through experiment 

execution and analysis to the global interpretation of results. An experimenter might 

spend months meticulously matching stimuli for illuminance and visual complexity only 

to overlook key individual differences (e.g., fatigue, substance abuse, motivation) or task-

correlated covariates (e.g., blinks). Many of these sources of error are difficult to detect 

and some are impossible to retroactively correct. Biased data or faulty analyses can in 

turn support spurious conclusions. To follow, we focus on common threats to validity 

during design (before), execution (during), and analysis (after) of your pupillometry 

study. 

 

2.0 Before your Pupillometry Study 

 

2.1 Before: Theoretical considerations 

Consider content and construct validity when debating the use of pupillometry as 

your dependent measure. Validity is typically regarded as a psychometric dimension in 

the development of behavioral scales and assessments. Yet, a critical evaluation of 

validity can also be a useful exercise in weighing the value of pupillometry as a source of 

evidence for your particular research question. Construct validity is the extent to which a 

particular tool accurately measures the latent concept it is intended to measure (Cronbach 

& Meehl, 1955; Sireci, 1998). For example, a wrongheaded emotion researcher might 

operationally define an abstract concept such as ‘happiness’ as ‘the number of steps a 

person takes in a day’. This operational definition lends itself to reliable objective 
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measurement, but it has no construct validity. In contrast, content validity is the extent to 

which an instrument measures all components of a latent construct. A critical evaluation 

of validity forces us to answer two key questions:  

 

a) What exactly do we hope to measure?  

b) What exactly does pupillometry measure? 

 

Construct validity has special relevance for pupillometry. When a researcher 

seeks to assess cognitive load, for example, she should provide a clear operational 

definition of this construct. A chronic lack of falsifiable and reproducible operational 

definitions has been a major shortcoming in pupillometry. Researchers have shifted the 

goalposts over time as to what the cognitive pupil response indexes (e.g., interest level, 

cognitive load, cognitive control, mental effort, mental workload, mental activity, 

resource allocation, attention changes, executive functioning, effortful mental activity, 

phasic arousal, adaptive gain, attentional change). One possibility is that the pupil 

responds selectively to each of these constructs and that these orthogonal signals all 

bottleneck at the pupil. A more plausible alternative hypothesis is that many of these 

constructs load on the same latent factor, i.e., physiological arousal. Thus, the pupillary 

system might be agnostic to subtle distinctions between cognitive load and cognitive 

control but instead fuels the metabolic demands required by each. In any case, 

researchers must consider the multifactorial nature of this neurobiological signal and 

exercise appropriate caution regarding the certainty of their inferences.  

Pupillometry is typically used for confirmatory hypothesis testing. For example, 

in a study of listening effort and speech intelligibility, Zekveld and Kramer (2014) 

hypothesized that, “pupil dilation would be largest at medium intelligibility levels, and 

smaller in both easy conditions and in extremely difficult listening conditions resulting in 

cognitive overload”. In this particular design, the null hypothesis (H0) is that pupil 

dilation will not differ across the listening conditions. The importance of a clearly stated 

set of falsifiable hypotheses cannot be overstated. In the Zekveld and Kramer (2014) 

study, the independent variable was speech intelligibility, and the authors manipulated 

speech intelligibility by modulating the signal-to-noise ratio. From a philosophical 

standpoint, this is an outstanding manipulation because it is both content-valid and 

construct-valid. 

Rigorous design in pupillometry should include formal hypothesis tests and 

validity checks. In an ideal world, experiment planning should also include principled 

stopping rules and well-justified sample size estimates. Power estimation remains a 

lacuna in pupillometry, however. Heterogeneity in measurement scales across different 

studies (e.g., pixels, arbitrary units, mm) and the lack of an extensive database of age-

stratified norms has left researchers with few options other than to plan sample sizes by 

mimicking previous studies. 
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2.2. Before: Methodological Considerations 

Numerous trait- and state-level individual differences moderate the cognitive 

pupil response. Trait variables known to impact pupillometry tend to remain relatively 

stable or evolve slowly over time (e.g., age, attention deficit disorder, memory span). In 

contrast, state factors involve behaviors which rapidly change in response to specific 

conditions (e.g., exaggerated startle reflexes to sudden sounds, agitation after consuming 

caffeine, migraine headache, etc.). Individual differences pose unique threats to validity 

especially when studying clinical populations whose levels of arousal, fatigue, motor 

coordination, affect, motivation, and other neurocognitive abilities fluctuate throughout 

the course of a day or on idiosyncratic medication dosage schedules. Thus, conducting a 

valid pupillometry study among special populations requires exhaustive consideration of 

a wide range of etiology-specific anatomical and neurobehavioral characteristics.4 To 

follow, we focus on broad considerations for conducting cognitive pupillometry among 

neurotypical adults. 

 

2.2.1 Before: Considering Trait-Level Individual Differences 

Trait-level individual differences are sometimes the focus of pupillometry. For 

example, Tsukahura and colleagues reported significant correlations between baseline 

pupil size and fluid intelligence (a trait-level factor) (Tsukahara et al., 2016; Tsukahara & 

Engle, 2021). However, individual differences in trait-level variability are more often 

considered as ‘noise’ or obstacles toward the aim of making clean inferences about a 

particular experimental manipulation. A common method of controlling for trait-level 

differences involves specifying inclusion/exclusion criteria. 

Age is trait-level variable known to influence the pupillary response. The levator 

muscles within our eyelids may stretch and weaken with age causing our eyelids to droop 

(Finsterer, 2003; Friedman, 2005). This phenomenon, known as ptosis, can present a 

conundrum for eyetracking especially for researchers who are unaware of it. In our own 

experience, eyetrackers tend to omit many observations and often misattribute ptosis to 

blink artifact. Correcting for ptosis during an experiment might involve simple steps such 

as recording from the less droopy eye or asking participants to open their eyes as widely 

as possible.  

 Another trait-level factor associated with aging is smaller baseline pupil size 

(Kim et al., 2000; Morris et al., 1997; Van Gerven et al., 2004). It remains an open 

question whether the amplitude of evoked pupil responses from this reduced baseline is 

dampened in aging. Some studies have reported higher task-evoked dilation for older 

adults (Piquado et al., 2010), whereas others have reported the opposite phenomenon 

 
4 For recent representative pupillometric studies in neuropsychiatric disorders see Burley, 

Snowden, & Gray (2019), Kries, Zhang, Moritz, & Pfuhl (2021), and Schneider, Leuchs, Czisch, 

Samann, & Spoormaker (2018). 
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(Gerven et al., 2004), an issue which also depends on the statistical approach taken 

(McLaughlin et al., 2021). In any case, researchers should be cautious when conducting 

between-subjects contrasts such as younger vs. older adults because their canonical pupil 

response functions likely differ in ways that are not yet fully understood.  

Many pupillometry studies among neurotypical adults use a common set of 

exclusion criteria for trait-level factors. These include the presence of sensory deficits 

(e.g., sensorineural hearing loss), a history of neurodevelopmental disorders (e.g., 

dyslexia, specific language impairment, attention deficit disorder), ocular disease or 

trauma (e.g., cataracts), and neurological disorders (e.g., traumatic brain injury, stroke). 

Pupillometry researchers typically do not control for handedness as a proxy measure for 

language lateralization since it is assumed that the cognitive pupillary response is coupled 

across both eyes. Some researchers do, however, control for bilingualism. This decision 

tends to be motivated (however implicitly) by the need to control for the additional 

processing demands imposed by language proficiency and/or code switching.  

 Researchers interested in testing neurotypical participants have several options for 

confirming roughly normal global cognition. The first option involves asking participants 

to identify whether they have a history of learning disability or neurological disorder. It is 

also helpful to ask participants if they are currently experiencing difficulties in memory, 

language, or concentration. Although self-report can be expedient, it has limitations with 

respect to sensitivity and specificity. Participants might be unaware that they are 

experiencing declines in cognition (e.g., mild cognitive impairment), or they might fear 

stigma of disclosing an impairment.  

A more rigorous alternative to self-report involves formally assessing global 

cognition using a standardized neuropsychological screening tool such as the Montreal 

Cognitive Assessment (MoCA) (Nasreddine et al., 2005) or the Mini Mental State 

Examination (MMSE) (Folstein et al., 1975). There are advantages and disadvantages to 

confirming normal cognition using a standardized measure. First, specificity is 

problematic for the MoCA because this particular measure tends to misclassify older 

African American adults as cognitively impaired with high false positive rates (Rossetti 

et al., 2017; Zahodne et al., 2017). As a consequence, your well-intended screening tool 

could introduce cultural and/or racial bias by screening out particular group(s) of people 

whose inclusion is essential for promoting representativeness.  

 Another ethical consideration involves follow-up for people who fail a cognitive 

screen. A common and significant fear in middle-aged and older-adults is memory loss 

and the onset of dementia (Kessler et al., 2012). Experimenters rarely consider the impact 

that being disqualified from a study might cause. Researchers should plan for this 

contingency and encourage participants to discuss subjective memory complaints with 

their primary care provider. In addition, we have found it helpful to provide people with 
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concrete resources such as contact information for helplines (e.g., Alzheimer’s 

Association) and university clinics where they might receive free or low-cost treatment.5 

 

2.2.2 Before: Considering State-Level Individual Differences  

A dedicated pupillometry researcher must consider many state-level individual 

differences. People experience normal fluctuations in mood, arousal, and motivation 

throughout the day. These daily fluctuations are nested within longer cycles of maturation 

playing out over months and years. Some of this variability is predictable. For example, a 

pupillometry study conducted among college students at exam time is likely to involve 

elevated stress, sleeplessness, fatigue, and anxiety that could contaminate your results. 

Similarly, time of testing may play a significant role in the performance of people with 

insomnia. Although it is impossible to assess all possible trait-level factors, a useful 

strategy is to consider factors that impact a person’s ability to intensely concentrate for a 

prolonged duration (e.g., alertness, fatigue, motivation, drug effects). 

Wakefulness is an important consideration for planning the length and timing of a 

pupillometry study. Drowsiness produces an abnormal pattern of pupil oscillation known 

as hippus (Lüdtke et al., 1998; Wilhelm et al., 1998). Moreover, sleep-deprived 

participants tend to demonstrate decreased pupil diameters (Morad et al., 2000) and 

diminished pupillary light reflexes (Lowenstein et al., 1963) due to diminished 

sympathetic and parasympathetic innervation of the pupillary muscles. Possible methods 

for counteracting fatigue include structuring relatively brief testing sessions along with 

regular interaction from the experimenters. This performance boost might at least in part 

be attributable to the ‘good-subject effect’, the tendency for a person to perform better 

when seeking tacit approval from an observer (Nichols & Maner, 2008).  

Many of us respond to unpleasant states by self-medicating. For example, people 

might counter headache pain with ibuprofen, fatigue with caffeine, and intermittent 

allergy symptoms with antihistamines. Each of these states (e.g., pain, fatigue, dry eyes) 

that originally motivated us to medicate can influence pupillary responses in isolation. In 

addition, drugs commonly used to treat these states also impact the pupil response, either 

through direct or indirect pathways. One example of a direct effect on pupillary behavior 

involves the action of anticholinergic medications such as diphenhydramine (a common 

ingredient in Benadryl and Nyquil) on the sphincter muscles of the iris resulting in 

dilation (mydriasis) (Harris et al., 1946; Jaanus, 1992). The same anticholinergic drug 

may produce indirect effects on the pupil response by inducing drowsiness. Thus, people 

who take common antihistamines to cope with allergy symptoms before a pupillometry 

study may experience unintended side effects such as drowsiness and over-dilated pupils. 

Other ‘red flags’ for state-induced pharmacological effects in pupillometry include opiate 

or ethanol intoxication (Larson, 2008). 

 
5 This is important! Please contact the first author (reillyj@temple.edu) if he can assist with your efforts. 

mailto:reillyj@temple.edu
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The range of pharmacological effects on nervous system function are substantial. 

Banning a drug such as caffeine solves one problem (e.g., no participants consumed 

caffeine) while creating an arguably worse problem (e.g., some participants experience 

early symptoms of withdrawal) (O’Shea & Moran, 2018). There is no clear guidance on 

how to approach the issue of pharmacological effects in pupillometry. Many researchers 

pursue a more pragmatic approach to drug exclusions. Participants are typically excluded 

if they are sedated and/or exhibiting altered mental status at the time of testing regardless 

of the drug or psychological/neurological etiology.  

Other state-level factors are linked to stimulus anticipation and test anxiety. Some of 

these factors can be directly observed. For example, people may bite their lips, blink, or 

produce extraneous motor movements correlated with the onset of events. Some of these 

behaviors may be ameliorated by interacting with participants and adding a sufficient 

number of feedback-based training trials prior to conducting the true experiment. In our 

own experience, asking participants if they have questions or concerns, and how we can 

make them feel comfortable tends to put them at ease. These interactions and frequent 

check-ins can in turn result in better retention and higher data quality.  

A final consideration that is often overlooked is how the task-evoked pupil response 

changes over the course of an experiment. Figure 6 shows model fits to pupil response 

throughout an experiment (D. McLaughlin, personal communication). The change from 

baseline is biggest in the beginning of the experiment, and smallest at the end. This 

change may reflect fatigue, habituation to the experimental paradigm, changes in tonic 

pupil response, or some combination of these factors. Regardless of the underlying 

cause(s), from a practical perspective, a response that diminishes over time is a challenge 

for studies in which changes in cognitive effort are of interest (for example, a perceptual 

learning or training study). Equally distributing experimental conditions throughout the 

experiment is also important, so that time is not confounded with experiment condition (if 

Condition A always comes first, and Condition B always last, a smaller response in 

Condition B might be due to changes in effort or simply because it occurs later, and later 

responses are smaller). Statistically accounting for time may provide better model fits and 

greater sensitivity to effects of interest. 

 

Figure 6. Changes in task-evoked pupil response over the course of an experiment 
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2.2.2 Before: Considering Environmental Factors 

‘Let there be well-controlled light’ should be the mantra of pupillometry. The 

pupillary system is highly photosensitive, and the dynamic range of pupillary dilation and 

constriction in response to light is hundreds of times larger than the magnitude of the 

cognitive pupil response. As such, uncontrolled luminance in the testing room and 

variable luminance contours within the stimuli themselves can easily eclipse the 

cognitive pupil response. 

  Recording pupillary data in extremely dark or intensely bright lighting conditions 

presents substantial challenges. Most pupillometry studies do not assess the full dynamic 

range of pupillary dilation and constriction. Instead, a more common laboratory setup 

involves testing participants who are seated at a computer monitor under fluorescent 

lighting. Winn and colleagues (2018) recommended maintaining ambient light intensities 

between 10 and 200 lux. Handheld light meters are inexpensive but essential tools for 

ensuring that light intensities fall within acceptable ranges. In addition to a moderate 

range of intensity, researchers should strive for relatively static lighting conditions over 

the course of an experiment. Testing in a windowless room can help attenuate 

idiosyncratic light and shadow. In our own lab, we test participants in a sound attenuated 

booth with blackout film covering the single window. Once the door to the sound booth is 

sealed, the only ambient light source is the computer monitor.  

In addition to ambient lighting in the testing room, it is essential to control for 

systematic differences in the stimuli. For example, photographs of objects in one 

condition might simply be darker than another condition (e.g., snowy scenes vs. forest 

scenes). In this particular example, an experimenter interested in executive demands 
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would almost certainly expect to encounter higher evoked pupil dilation when people 

view photographs of dark forests. However, they could not attribute this response to the 

variable of interest (executive function). We can only be sure that the participants’ pupils 

dilated more to forests because forest scenes tend to be darker than snowy scenes. Tools 

such as the SHINE toolbox for MATLAB (Willenbockel et al., 2010) are helpful for 

matching visual stimuli on luminance and other relevant variables (e.g., complexity).  

Another method of controlling for systematic differences in luminance across two 

stimulus conditions is to avoid visual presentation altogether. Participants in our own 

pupillometry research hear stimuli (e.g., pure tones, curse words) while viewing a static 

gray background against which they view a central fixation cross (Reilly et al., 2018, 

2020). Auditory presentation circumvents some visual confounds (luminance, 

accommodation), but it is not a panacea. Sudden loud, novel, and/or frightening stimuli 

are capable of triggering startle responses (Davis, 1984). Startle reflexes tend to be 

conserved across other mammals, and they are thought to represent an adaptation for 

promoting rapid escape (withdrawal) while protecting the eyes and neck (Geyer & 

Swerdlow, 1998)  Moreover, control of central visual fixation remains crucial even in an 

auditory-only paradigm.  

Researchers must also consider idiosyncratic factors unique to their own 

laboratories when planning their studies. Computer hardware and software constraints 

(e.g., sound/graphic cards, headphones, RAM) often impact the reliability of stimulus 

timing, buffering, and presentation. Anti-virus programs, firewalls, and automatic 

software updates can initiate unpredictably, resulting in heartbreaking data loss. In a busy 

lab with several different ongoing projects, experimenters often change software settings 

or switch peripherals (button boxes, joysticks). Participants themselves may be tempted 

to touch or adjust the monitor or infrared eyetracking sensor. Of course there is no way to 

plan for every possible contingency. Steps such as disabling computer updates and 

conducting pre-experiment diagnostics during pilot testing are integral for identifying and 

preventing many such issues.  

 

2.2.3 Before: The Importance of Baselines  

Pupillometry researchers are typically most interested in absolute change relative 

to some baseline. In a non-stationary time series, the baseline amplitude changes over 

time. Therefore, it is necessary to correct for the starting amplitude of each trial in order 

to eventually contrast the magnitude of evoked change from a uniform standard (0mm). 

Researchers have historically applied many different baseline correction techniques 

including non-linear corrections (% change) which assess relative change. Our laboratory 

empirically tested whether the pupil response scales linearly or non-linearly from 

different baseline amplitudes (Reilly et al., 2018). We manipulated baseline pupil 

amplitude by having participants complete tasks with comparable executive demands 

(e.g., counting pure tones) while situated in either dark or bright light. We discovered that 
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the pupil tends to scale linearly across different baselines and that subtractive scaling is 

warranted (e.g., Change – Baseline) (see also Mathôt et al., 2018). 

Event-related pupillometry is almost always concerned with relative change in 

pupil amplitude from a neutral baseline. It is crucial to include a sufficient number of 

trials with their own baselines. A baseline period during an inter-trial interval should have 

no task demands. Its raison d’etre is to allow the pupil to settle into a steady state before 

the next event is initiated. In our own research, we tend to jitter inter-trial intervals so that 

event timing is slightly eccentric. During these intervals, participants view a static screen 

with a centrally positioned attention fixation cross. We later extract a 500 ms window of 

pupil size immediately preceding each event for use as that event’s unique baseline, a 

point we will revisit in the analysis section later in the chapter. When designing your own 

study, mind your baselines.  

 

2.2.4 Before: Be Prepared and Make Principled Decisions 

Technicians must cope with numerous demands during an experiment, including 

monitoring the participant’s wellbeing, troubleshooting technical issues, and ensuring 

that the experiment is proceeding as planned. Optimizing and standardizing eyetracker 

settings (e.g., sampling rate, which eye to sample from) beforehand will minimize the 

number of free parameters that will go wrong on testing day. Do not rely on the default 

settings of your eyetracker. Principled choices must be made before your study.  

An often neglected step in planning involves ensuring that your measurement 

scale promotes replication. Some eyetrackers record pupil dimensions using arbitrary 

units or pixels, whereas other systems report pupil size using a standard metric scale (mm 

or mm2). Please report pupil dimensions (diameter or area) in metric units. Since the 

pupil does not appear to scale non-linearly, measurements of % change from an arbitrary 

baseline (e.g., 8753 arbitrary units or 7653 pixels) are neither reproducible, nor 

particularly interpretable (Reilly et al., 2018) . In contrast, reporting evoked change in 

millimeters facilitates replication efforts across any eyetracking system.6 

Another fundamental consideration is how researchers should report pupil size. 

Studies perhaps most often report evoked pupil change in terms of pupil diameter. The 

validity of pupil diameter is premised on the assumption that the human eye is roughly 

spherical and that on-center measurement of the pupil approximates a flat disc. This 

assumption justifies a simple transformation between diameter and surface area (𝜋 ×  𝑑). 

In reality, the human eye is slightly aspherical (Binda et al., 2013; Laeng et al., 2011).  

 
6 Conversion from arbitrary units or pixels to mm can be achieved by measuring a known reference such as an artificial 

eyeball. Our laboratory had no idea where to acquire an artificial eyeball, so we recorded diameter (in arbitrary units) 

of several black dots printed on cardstock and taped to eyeglasses at a fixed distance of 60 cm from the sensor. Prior to 

tracking the dots, we confirmed their diameters (e.g., 3mm, 4mm, 5mm, 6mm) using a measurement caliper. See your 

eyetracker’s documentation for a recommended conversion technique. Sometimes this is a matter of simply checking a 

box for mm as preferred output. 
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Another principled decision involves determining an appropriate sampling rate. 

Hess and Polt (1960) sampled about four times a second, whereas many eyetracking 

systems today sample in excess of 1000 Hz. There is no consensus as to what constitutes 

either an optimal sampling rate or thresholds for reliable minima/maxima. A general 

principle borrowed from digital signal processing is that higher sampling rates yield 

better source reconstruction. Nevertheless, a sampling rate of 1000 Hz may be 

unnecessarily high for reconstructing the pupillary response function. Higher sampling 

rates are not always ‘better’ in that oversampling can incur costs both in terms of data 

proliferation and model overfitting. Researchers must balance these costs/benefits in 

selecting a sampling rate. Option 1 (not recommended) is to rely on the default sampling 

rate for your eyetracker and hope for the best. Option 2 is to reduce the default sampling 

rate and acquire data at a more plausible rate of biological change (e.g., 1000Hz to 

250Hz). Option 3 is to downsample the raw data after acquisition through procedures 

such as binning. Option 4 is to retain all of the original data (e.g., 3000 observations per 

3000ms event) and analyze evoked change using growth curve modeling, being cautious 

to avoid overfitting (Mirman, 2014).  

 

3. During your Pupillometry Study 

You have settled on a sampling rate and measurement scale that will promote 

replication. You have successfully screened and consented your participant who is 

comfortably positioned in a chinrest. You have cycled through your custom “pre-flight” 

checklist and ensured that all eyetracking settings are accurate as planned. It’s go time! 

This section will cover considerations for ensuring high quality data collection during a 

pupillometry study. 

 

3.1. During: Minimize Movement Artifacts 

Analog film capture during the early days of pupillometry required rigid and 

prolonged head stabilization. Many remote infrared eyetrackers today are capable of 

recording data without any head stabilization whatsoever. Advances in motion 

compensation have yielded unprecedented flexibility in testing populations for whom 

head stabilization or restraint is impossible. Nevertheless, remote eyetracking is not 

without cost in terms of sacrificing data quality. Researchers must continue to minimize 

head motion as much as possible. An ophthalmological chinrest seems to represent a 

reasonable compromise between no head stabilization and A Clockwork Orange style 

restraint system. Many chinrests clamp to the side of a desk or table. If times are hard, 

you can even 3D print your own chinrest (Murphy, 2019) https://github.com/nimh-

nif/SCNI_Toolbar/wiki/RestEasy:-An-open-source-chin-rest-for-human-psychophysics-

experiments).  

Gaze tracking studies are typically designed to analyze patterns of visual fixation 

and saccade dynamics as our eyes move across a screen. These large eye movements are 

https://github.com/nimh-nif/SCNI_Toolbar/wiki/RestEasy:-An-open-source-chin-rest-for-human-psychophysics-experiments
https://github.com/nimh-nif/SCNI_Toolbar/wiki/RestEasy:-An-open-source-chin-rest-for-human-psychophysics-experiments
https://github.com/nimh-nif/SCNI_Toolbar/wiki/RestEasy:-An-open-source-chin-rest-for-human-psychophysics-experiments
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antithetical to pupillometry where design must minimize pupil foreshortening artifacts. 

That is, the most precise measurement of the pupil occurs while our eyes remain centrally 

fixated. Stimuli presented at larger visual angles tend to result in unreliable estimates of 

pupil size because the pupil is no longer spherical at oblique angles. Although several 

corrections have been proposed (Gagl et al., 2011; Brisson et al., 2013; Hayes & Petrov, 

2016), there are also practical steps to minimizing peripheral eye movements. Visual 

stimuli should be presented centrally and within a narrow visual angle. Allow participants 

frequent breaks and ensure that they are engaged with the task (i.e., mind wandering = 

gaze wandering). 

 

3.2. During: Minimize Fatigue and Maximize Engagement 

Many of us find our own research fascinating. Fewer of us consider how boring 

our experiments might be for participants. Boringness is not a trivial consideration for 

data quality in pupillometry due to the pupillary system’s sensitivity to an interaction 

between cognitive effort, arousal, and reward motivation (Aston-Jones & Cohen, 2005; 

Gilzenrat et al., 2010). Boring and repetitive tasks that tax sustained attention can induce 

fatigue and ultimately task disengagement (Granholm et al., 1996). When participants 

disengage from a demanding task and enter a resting state, they typically show a 

corresponding reduction (or absence) of task-evoked pupil dilation (Franklin et al., 2013).  

Participants disengage for many reasons during an experiment. A common cause 

is when task demands exceed cognitive capacities. One of the earliest and most robust 

confirmations of this phenomenon was reported for memory encoding in immediate serial 

recall of digits (Beatty & Kahneman, 1966). Several studies in the subsequent decades 

have replicated this effect (Johnson et al., 2014), confirming that when memory load, as 

indexed by list length, is manipulated, participants show systematically larger pupil 

dilation during encoding as list lengths grow (e.g., to a length of approximately 7 digits) 

until maximum span of immediate recall (e.g., N=9 digits) is surpassed. That is, once 

participants disengage from the problem, pupil amplitude ceases to increase. A researcher 

who only considers the raw data might come to the erroneous conclusion that challenging 

math problems are no more demanding than simple math problems.  

Another possible cause of disengagement is motivation. If there is no intrinsic 

reward to the participant, she might not care enough to invest her full effort. When 

participants are left alone in a testing room and exposed to long runs of boring stimuli, 

one can hardly blame them. Regardless of intrinsic motivation, keep sessions brief and 

provide ample breaks. For projects that require multiple testing sessions for the same 

participant dispersed over different days, consider scheduling each visit for roughly the 

same time if possible (see also Veneman et al., 2013). This will reduce potential 

confounds associated with normal fluctuations in arousal people experience throughout 

the day. 

 

4.0 After your Pupillometry Study: What Next? 
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Meticulous planning and solid execution have gifted you with useable data. 

However, even under the best circumstances your data will require substantial 

preprocessing before statistical contrasts are possible. The section to follow covers steps 

in transforming a noisy raw time series into a series of smoothed, aggregated mountains. 

Data cleaning and analysis in pupillometry represents a dynamic area of methods 

development. To follow, we focus on some of the major considerations in developing a 

customized data processing and analysis pipeline.  

 

4.1 After: Data inspection and Outlier Identification 

 Inspect your raw pupillometry data. Then inspect it again. Your output should 

include event codes (e.g., trial number), timestamps, and pupil size data at a bare 

minimum. Since you are most likely human, your ability to detect subtle trends within 

hundreds of thousands of numbers is probably limited. Plot your raw data as an 

uncorrected time series. Visual inspection of each session and every participant is 

essential for identifying both global and local artifacts. 

 One advantage that pupillometry researchers have is that the pupil’s approximate 

dynamic range has known anatomical constraints. The human pupil diameter varies 

between approximately 2.0 mm and 9.0 mm in extremely bright and dark lighting 

conditions (Loewenfeld & Lowenstein, 1993; Wang & Munoz, 2015). Observations 

falling outside of this dynamic range are anatomically impossible and must, therefore, 

reflect artifact. These thresholds provide benchmarks for blink detection. When the eyelid 

briefly occludes the pupil during a blink, eyetrackers typically record pupil size as rapidly 

dropping to 0 mm.  An abnormally high rate of constriction coupled with complete 

occlusion together indicate the presence of a blink (Hershman et al., 2018, 2019). 

Innovative methods of blink correction involve both detection of the blink event and the 

removal of ‘pathological’ observations preceding and following the blink. Blinks are not 

the only cause of signal dropout. People sneeze, cough, and look away from the infrared 

sensor when distracted. Each of these artifacts produce gaps in an otherwise continuous 

time series. In the next section we outline several techniques for filling these gaps. 

 

4.2. After: Random vs, Systematic Data Missingness 

Consider yet another scenario. You are an exterminator hired by a statistician to 

evaluate termite damage on a staircase. You must supply a damage report, but your client 

is also curious whether the damage is systematic or random. Your pest removal training 

has not prepared you well for this moment, but you reason that a random termite attack 

would result in a roughly uniform distribution of termite damage across the entire 

staircase. In contrast, a systematic attack would involve focal or concentrated attacks on 

specific subsections of the staircase. Staircases and pupillary time series both exemplify 

systems that can tolerate more random than systematic missingness. Pupillometry 
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researchers must accordingly consider both the source and extent of randomness within 

their data.  

Intermittent coughing, sneezing, or unscheduled fire alarms likely constitute more 

random than systematic error. In a well-powered design, random missingness should not 

bias one condition over another because random noise is absorbed evenly across all 

experimental conditions. Similarly, the structural integrity of a staircase can survive more 

diffuse than focal (systematic) termite damage. Random signal dropout does, however, 

have limits. When termites decimate enough wood, the entire staircase is susceptible to 

collapse. Similarly, pupillary time series that require extensive imputation are subject to 

bias. There is no universal standard for a threshold of random data loss in pupillometry.  

Non-random or systematic missingness can be especially difficult to control. Two 

common systematic artifacts include mental imagery and blinks. When people are 

engaged in spatial problem solving and/or visual imagery, their eye movements and pupil 

dynamics are both impacted (Grant & Spivey, 2003; Just & Carpenter, 1985; Laeng & 

Sulutvedt, 2014; Mathôt et al., 2017; Thomas & Lleras, 2007; Zavagno et al., 2017). 

When people engage in mental rotation or other complex working memory tasks, they 

experience changes in pupil size along with idiosyncratic eye movements. These 

perturbations are likely the result of perceptual simulation (i.e., visual imagery) rather 

than cognitive load. Researchers should be aware of these confounding effects when 

considering inferential validity. 

Blinks represent another complex artifact in pupillometry. The frequency and 

duration of blinks are strongly correlated with task demands (Siegle et al., 2008) and 

blink rate provides a complementary index of cognitive load in its own right (Chen & 

Epps, 2014; Recarte et al., 2008). Although a well-designed pupillometry study should 

seek to minimize blink artifact, blinks are inevitable. In the section to follow, we discuss 

methods for correcting blinks and considerations for preventing blinks. 

 

4.3. Artifact Detection  

Even after careful planning and controlling for systematic error, your raw 

pupillary data will benefit from cleaning (Mathôt, 2018). As individual laboratories gain 

experience with cognitive pupillometry, many develop their own custom cleaning 

pipelines. Although these approaches differ in some respects such as the order of 

operations, they also share commonalities including artifact detection, imputation of 

missing values, and baseline correction.   

One of the first steps in cleaning a raw pupillary time series involves filtering 

impossibly high and low values for raw pupil size and rate of change (i.e., acceleration). 

A simple approach to gross artifact rejection involves applying a bandpass filter to the 

raw pupil time series using known anatomical constraints on the dynamic range of the 

human pupil. For example, a bandpass filter with lower and upper bounds of 2 mm and 9 

mm respectively will omit both impossibly low and high observations outside the known 

dynamic range of the pupil. Mind the distinction between missing values and zero when 
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applying filters or other artifact rejection procedures, When participants close their eyes 

or look away from an infrared sensor, eyetrackers often register a rapid drop in pupil size 

to 0 mm. Since no pupil has a 0 mm diameter, impossible observations must be omitted. 

Marking these data as missing (e.g., NA) is necessary for data imputation.  

Some pupillometry artifacts are more subtle and will likely survive a bandpass 

filter. These artifacts necessitate special detection and correction techniques. Blinks 

compromise data acquisition both while the eyelid has completely occluded the pupil (all 

0 mm observations) but also during the intervals surrounding the blink when the eyelid is 

closing and re-opening. A simple blink artifact rejection requires both replacing 0 mm 

observations with NA but also replacing leading and following observations within a 

temporal window surrounding the blink (Geller et al., 2019),. Blinks represent one such 

case where researchers have proposed artifact detection algorithms (Hershman et al., 

2018; Kret & Sjak-Shie, 2019). The idea behind this correction approach is that the blink 

and the intervals surrounding the blink can be identified through a change in dilation 

speed (Kret & Sjak-Shie, 2019) or monotonic pattern (Hershman et al., 2018). Blink 

correction is built in to programs such as GazeR (Geller et al., 2019), CHAP (Hershman 

et al., 2019).  

Recall that pupil measurement can deform when the eye rotates at oblique angles 

(Brisson et al., 2013; Gagl et al., 2011; Hayes & Petrov, 2016). These pupil 

foreshortening artifacts are not always detectable upon visual inspection of a raw pupil 

time series. Although complex mathematical corrections exist for off-center gaze, 

stimulus arrays should minimize visual angle as much as possible.  

 

4.2 Making things whole again: Data imputation 

Artifact rejection produces gaps in an otherwise continuous univariate time series. 

The purpose of imputation is to replace these missing values with reasonable estimates of 

what might have been. Pupillometry as a univariate time series represents a unique 

challenge for imputation. Since pupillary data are autocorrelated, the most accurate 

estimate of any missing observation can be derived by looking to its neighbors. For 

example, my best forecast of the high temperature in Philadelphia tomorrow is derived by 

the high temperature in Philadelphia today ± a small fudge factor. Single imputation 

techniques employed in randomly sampled datasets (e.g., replacing missing values with 

sample means or medians) are inappropriate for estimating missing values because of 

non-independence between successive observations. Pupillometry researchers typically 

approach the imputation problem by applying various forms of interpolation (e.g., linear, 

spline) over their datasets.  

    The general idea of interpolation (e.g. linear, cubic, spline) is that gaps in a non-

continuous time series are estimated by ‘connecting’ the datapoints which endcap each 

side of the gap. The most simple type of interpolation (i.e., linear) involves plotting a 

straight line between endpoints and distributing all missing point estimates equidistantly 

along the line.  
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4.3. Smoothing Pupillary Time Series 

There exist various smoothing algorithms, but all share the same overarching 

purpose. Smoothing reduces point-to-point variability across a time series. In our own 

work, we smooth the data using a simple moving average (window size=5). That is, each 

new observation is averaged with n observations surrounding it to yield a new time 

series. Larger window sizes produce smoother time series. Thus, what starts as a jagged 

but continuous mountain range should appear more rounded after smoothing. Although 

there are no recommended minimum/maximum thresholds for window size (n), 

researchers should exercise caution in specifying larger windows that obscure meaningful 

variability.  

 

4.4 Baseline Correction and Event Extraction 

One of the most common pupillometry designs involves comparing absolute 

differences in evoked pupil dilation within one or more conditions. Since pupil responses 

are typically initiated from different baseline amplitudes (e.g., 3mm vs. 6mm), it is 

necessary to normalize evoked change from a uniform standard (0 mm).  Subtractive 

baseline correction is typically implemented with the rationale that baseline pupil size 

varies within and between individuals, effectively constituting non-stationary time series. 

Our own research has shown that the pupil likely scales linearly independent of 

the baseline amplitude (Reilly et al., 2019). This property of the pupil response is best 

modeled using a linear scaling technique (i.e., subtractive correction). We typically 

conduct subtractive baseline correction by computing an average pupil diameter over the 

500 ms neutral interval preceding an event. We subtract this median baseline pupil size 

from each subsequent observation extending outward from the event onset (0 ms) to a 

specified window of 3000 ms. This procedure normalizes each event to its own baseline, 

allowing flexibility in baseline pupil size over a session. If you apply dynamic baseline 

correction using this method, there is no need for detrending because all events are 

normalized to the same starting amplitude (0 mm).  

During the final stages of preprocessing, you will extract all baseline-corrected 

events from the time series. You must specify the duration over which you will window 

the pupil response function. The event window must be of a sufficient duration to 

characterize the rise and fall of the pupil response. However, the event window must not 

be so long that it captures rest or anticipation of the next subsequent stimulus. Event 

duration is typically constrained both by stimulus duration and the nature of the canonical 

pupil response.  

 

4.4 Data Analysis: Contrasting Two Mountains 

 The past decade has seen advances in the sophistication, power, and complexity 

of pupillometry data analysis. The vices and virtues of these particular statistical models 
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(e.g., generalized additive mixed models) are beyond the scope of this primer. 

Nevertheless, pupillometry does pose challenges for any statistical model you ultimately 

pursue. We address some of these issues to follow. 

We have identified five parameters that characterize a two-dimensional mountain 

(see Figure 3). These include: peak amplitude, time-to-peak, sustained amplitude, area 

under the curve, and time-to-decay. Researchers face a dilemma in selecting which 

parameter(s) to contrast because no comprehensive neurobiological model of these 

parameters exists. As such, we have a limited understanding of how the canonical pupil 

response function might shift under different neural and behavioral challenges across the 

lifespan. Reciprocal relationships between brainstem activation, arousal, and pupil 

dilation have motivated an intense focus on peak amplitude and time-to-peak as 

parameters of interest in pupillometry. Nevertheless, great variability exists in how peak 

amplitude is derived (Tun et al., 2009) and indeed whether the pupil response might 

better be modeled using a two-peak solution with an early peak at approximately 600ms 

and a late peak at 1200ms (Steinhauer & Hakerem, 1992).  

 

5.0 Concluding remarks, unanswered questions, future directions 

A proliferation of low cost eyetracking hardware along with a supportive user 

community have seeded exponential growth in the popularity of pupillometry. In turn, 

pupillometry has recently generated remarkable insights into cognition, consciousness, 

and mental imagery (Laeng et al., 2012; Laeng & Sulutvedt, 2014; Mathôt et al., 2015; 

Zavagno et al., 2017; Mathôt et al., 2017). The advent of automated software applications 

has made pupillometry accessible to a wide range of disciplines not typically steeped in 

psychophysiology. Our goal in this primer is to highlight complexities of measuring this 

biological signal for non-experts.  

There are many factors to consider if your aim is to conduct a rigorous 

pupillometry study. Newcomers to this technique might be frustrated to learn that there 

are no uniform best practices for design, execution, and analysis of pupillometry, 

although this does appear to be changing (Winn et al., 2018).  Pupillometry often reflects 

a long-term commitment to learning the nuances of this technique over time. Our own 

laboratory has stumbled upon many of the pitfalls discussed here through trial-and-error 

over about a decade. A preventable error as simple as a technician switching eyetracker 

settings between studies has resulted in data loss for our lab on several occasions. We 

have also learned firsthand the necessity to monitor fatigue and to double check stimulus 

delays and response logging. Checklists are essential. Develop your own and share them 

with other researchers. 

 In conclusion, much remains to be learned about pupillometry. New methods of 

design and time series analysis hold promise for improving the rigor of pupillometry. 

Yet, the field remains limited by an anemic history of replication (but see de Winter et 

al., 2021) and the lack of age-stratified norms against which effect sizes might be 

derived. A deeper understanding of the neural and neuromuscular substrates of the 
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cognitive pupil response function is essential for understanding which cognitive 

processes are indexed by specific parameters and how these parameters might be 

selectively perturbed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

27 

 

 

Acknowledgements 

 

We thank Jason Geller, Jonathan Peelle, Drew McLaughlin, and members of the 

Concepts and Cognition Laboratory at Temple University. We are grateful to all of the 

scientists who have developed open source software applications for pupillometry. Your 

immeasurable support represents the best spirit of science. This work was supported in 

part by a grant from the US National Institute on Deafness and Other Communication 

Disorders (NIH/NIDCD DC013063) 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

28 

 

 

 

 

References 

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-

norepinephrine function: Adaptive gain and optimal performance. Annual Review 

of Neuroscience, 28, 403–450. 

Barbur, J. L. (2004). Learning from the pupil-studies of basic mechanisms and clinical 

applications. The Visual Neurosciences, 1, 641–656. 

Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of 

processing resources. Psychological Bulletin, 91(2), 276–292. 

Beatty, J., & Kahneman, D. (1966). Pupillary changes in two memory tasks. 

Psychonomic Science, 5(10), 371–372. 

Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces 

enhances the pupillary light reflex. Journal of Neuroscience, 33(5), 2199–2204. 

https://doi.org/10/f4j584 

Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure 

of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–

607. 

Bradshaw, J. L. (1968). Pupil size and problem solving. Quarterly Journal of 

Experimental Psychology, 20(2), 116–122. https://doi.org/10/cgmsd6 



 

 

   

29 

Bremner, F. (2009). Pupil evaluation as a test for autonomic disorders. Clinical 

Autonomic Research, 19(2), 88–101. https://doi.org/10/dk64df 

Brisson, J., Mainville, M., Mailloux, D., Beaulieu, C., Serres, J., & Sirois, S. (2013). 

Pupil diameter measurement errors as a function of gaze direction in corneal 

reflection eyetrackers. Behavior Research Methods, 45(4), 1322–1331. 

https://doi.org/10/f5kq7b 

Burley, D. T., Gray, N. S., & Snowden, R. J. (2019). Emotional modulation of the pupil 

response in psychopathy. Personality Disorders: Theory, Research, and 

Treatment, 10(4), 365. https://doi.org/10/ggrjqp 

Causse, M., Peysakhovich, V., & Mandrick, K. (2017). Eliciting sustained mental effort 

using the Toulouse N-back Task: Prefrontal cortex and pupillary responses. In 

Advances in Neuroergonomics and Cognitive Engineering (pp. 185–193). 

Springer. 

Chen, S., & Epps, J. (2014). Using Task-Induced Pupil Diameter and Blink Rate to Infer 

Cognitive Load. Human–Computer Interaction, 29(4), 390–413. 

https://doi.org/10/ghs95n 

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. 

Psychological Bulletin, 52(4), 281. https://doi.org/10/dcsjjf 

Davies, J. E., Barquet, A., Freed, V. H., Haque, R., Morgade, C., Sonneborn, R. E., & 

Vaclavek, C. (1975). Human pesticide poisonings by a fat-soluble 



 

 

   

30 

organophosphate insecticide. Archives of Environmental Health: An International 

Journal, 30(12), 608–613. https://doi.org/10/gmhnzh 

Davis, M. (1984). The mammalian startle response. In Neural mechanisms of startle 

behavior (pp. 287–351). Springer. 

de Rooij, A., Vromans, R. D., & Dekker, M. (2018). Noradrenergic Modulation of 

Creativity: Evidence from Pupillometry. Creativity Research Journal, 30(4), 339–

351. https://doi.org/10.1080/10400419.2018.1530533 

de Winter, J. C. F., Petermeijer, S. M., Kooijman, L., & Dodou, D. (2021). Replicating 

five pupillometry studies of Eckhard Hess. International Journal of 

Psychophysiology, 165, 145–205. https://doi.org/10/gmhjhb 

Denison, R. N., Parker, J. A., & Carrasco, M. (2020). Modeling pupil responses to rapid 

sequential events. Behavior Research Methods, 52(5), 1991–2007. 

https://doi.org/10/gg4zs2 

Elman, J. A., Panizzon, M. S., Hagler, D. J., Eyler, L. T., Granholm, E. L., Fennema-

Notestine, C., Lyons, M. J., McEvoy, L. K., Franz, C. E., Dale, A. M., & Kremen, 

W. S. (2017). Task-evoked pupil dilation and BOLD variance as indicators of 

locus coeruleus dysfunction. Cortex, 97, 60–69. 

https://doi.org/10.1016/j.cortex.2017.09.025 

Finsterer, J. (2003). Ptosis: Causes, presentation, and management. Aesthetic Plastic 

Surgery, 27(3), 193–204. https://doi.org/10/bkph2x 



 

 

   

31 

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-Mental state: A practical 

method for grading the state of patients for the clinician. Journal of Psychiatric 

Research, 12, 189–198. 

Forbes, S. (2020). PupillometryR: An R package for preparing and analysing 

pupillometry data. Journal of Open Source Software, 5(50), 2285. 

https://doi.org/10/gg2qmh 

Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J., & Schooler, J. W. 

(2013). Window to the wandering mind: Pupillometry of spontaneous thought 

while reading. SAGE Publications Sage UK: London, England. 

Friedman, O. (2005). Changes associated with the aging face. Facial Plastic Surgery 

Clinics, 13(3), 371–380. https://doi.org/10/c9d2xm 

Gagl, B., Hawelka, S., & Hutzler, F. (2011). Systematic influence of gaze position on 

pupil size measurement: Analysis and correction. Behavior Research Methods, 

43(4), 1171–1181. https://doi.org/10/c75xwk 

Geller, J., Winn, M., Mahr, T., & Mirman, D. (2019). GazeR: A Package for Processing 

Gaze Position and Pupil Size Data [Preprint]. PsyArXiv. 

https://doi.org/10.31234/osf.io/gvcxb 

Gerven, P. W. M. V., Paas, F., Merriënboer, J. J. G. V., & Schmidt, H. G. (2004). 

Memory load and the cognitive pupillary response in aging. Psychophysiology, 

41(2), 167–174. https://doi.org/10.1111/j.1469-8986.2003.00148.x 



 

 

   

32 

Geyer, M. A., & Swerdlow, N. R. (1998). Measurement of startle response, prepulse 

inhibition, and habituation. Current Protocols in Neuroscience, 3(1), 8–7. 

https://doi.org/10/fqf37m 

Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter 

tracks changes in control state predicted by the adaptive gain theory of locus 

coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252–

269. 

Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional 

and psychophysiologic interactions in fMRI: The importance of hemodynamic 

deconvolution. NeuroImage, 19(1), 200–207. https://doi.org/10/bc8ct8 

Goldinger, S. D., & Papesh, M. H. (2012). Pupil dilation reflects the creation and 

retrieval of memories. Current Directions in Psychological Science, 21(2), 90–95. 

Goldinger, S. D., & Papesh, M. H. (2013). Recollection is fast and easy: Pupillometric 

studies of face memory. In Psychology of Learning and Motivation (Vol. 59, pp. 

191–222). Elsevier. 

Granholm, E., Asarnow, R. F., Sarkin, A. J., & Dykes, K. L. (1996). Pupillary responses 

index cognitive resource limitations. Psychophysiology, 33(4), 457–461. 

Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving: Guiding 

attention guides thought. Psychological Science, 14(5), 462–466. 

https://doi.org/10/d97qck 



 

 

   

33 

Handwerker, D. A., Ollinger, J. M., & D’Esposito, M. (2004). Variation of BOLD 

hemodynamic responses across subjects and brain regions and their effects on 

statistical analyses. NeuroImage, 21(4), 1639–1651. https://doi.org/10/dv6qcs 

Harris, R., McGavack, T. H., & Elias, H. (1946). The nature of the action of 

dimethylaminoethyl benzhydryl ether hydrochloride (Benadryl): Effects upon the 

human eye. The Journal of Laboratory and Clinical Medicine, 31(10), 1148–

1152. https://doi.org/10.5555/uri:pii:0022214346901564 

Hayes, T. R., & Petrov, A. A. (2016). Mapping and correcting the influence of gaze 

position on pupil size measurements. Behavior Research Methods, 48(2), 510–

527. 

Hershman, R., Henik, A., & Cohen, N. (2018). A novel blink detection method based on 

pupillometry noise. Behavior Research Methods, 50(1), 107–114. 

Hershman, R., Henik, A., & Cohen, N. (2019). CHAP: Open-source software for 

processing and analyzing pupillometry data. Behavior Research Methods. 

https://doi.org/10.3758/s13428-018-01190-1 

Hess, E. H., & Polt, J. M. (1960). Pupil size as related to interest value of visual stimuli. 

Science, 132(3423), 349–350. 

Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple 

problem-solving. Science, 143(3611), 1190–1192. https://doi.org/10/fb3kx4 

Hoffmann, M., Lefering, R., Rueger, J. M., Kolb, J. P., Izbicki, J. R., Ruecker, A. H., 

Rupprecht, M., Lehmann, W., & Surgery, T. R. of the G. S. for T. (2012). Pupil 



 

 

   

34 

evaluation in addition to Glasgow Coma Scale components in prediction of 

traumatic brain injury and mortality. British Journal of Surgery, 99(S1), 122–130. 

Jaanus, S. D. (1992). Ocular side effects of selected systemic drugs. Optometry Clinics, 

2(4), 73–96. 

Jennett, B., & Teasdale, G. (1977). Aspects of coma after severe head injury. The Lancet, 

309(8017), 878–881. 

Johnson, E. L., Miller Singley, A. T., Peckham, A. D., Johnson, S. L., & Bunge, S. A. 

(2014). Task-evoked pupillometry provides a window into the development of 

short-term memory capacity. Frontiers in Psychology, 5, 218. 

https://doi.org/10/ghs96d 

Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil 

diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate 

cortex. Neuron, 89(1), 221–234. 

Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of 

mental rotation and individual differences in spatial ability. Psychological 

Review, 92(2), 137. https://doi.org/10/b8rk8j 

Kessler, E.-M., Bowen, C. E., Baer, M., Froelich, L., & Wahl, H.-W. (2012). Dementia 

worry: A psychological examination of an unexplored phenomenon. European 

Journal of Ageing, 9(4), 275–284. https://doi.org/10/f4cn3v 



 

 

   

35 

Kim, M., Beversdorf, D. Q., & Heilman, K. M. (2000). Arousal response with aging: 

Pupillographic study. Journal of the International Neuropsychological Society, 

6(3), 348–350. https://doi.org/10/c6x3gf 

Klingner, J., Tversky, B., & Hanrahan, P. (2011). Effects of visual and verbal 

presentation on cognitive load in vigilance, memory, and arithmetic tasks. 

Psychophysiology, 48(3), 323–332. https://doi.org/10/fqzf3m 

Kreis, I., Zhang, L., Moritz, S., & Pfuhl, G. (2021). Spared performance but increased 

uncertainty in schizophrenia: Evidence from a probabilistic decision-making task. 

Schizophrenia Research. https://doi.org/10/gmgb5x 

Kret, M. E., & Sjak-Shie, E. E. (2019). Preprocessing pupil size data: Guidelines and 

code. Behavior Research Methods, 51(3), 1336–1342. https://doi.org/10/gf5ssx 

Kuchinsky, S. E., Ahlstrom, J. B., Cute, S. L., Humes, L. E., Dubno, J. R., & Eckert, M. 

A. (2014). Speech-perception training for older adults with hearing loss impacts 

word recognition and effort. Psychophysiology, 51(10), 1046–1057. 

https://doi.org/10/f6kpcp 

Laeng, B., Orbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary Stroop effects. 

Cognitive Processes, 12(1), 13–21. https://doi.org/10.1007/s10339-010-0370-z 

Laeng, B., Sirois, S., & Gredeback, G. (2012). Pupillometry: A Window to the 

Preconscious? Perspectives on Psychological Science, 7(1), 18–27. 

https://doi.org/10.1177/1745691611427305 



 

 

   

36 

Laeng, B., & Sulutvedt, U. (2014). The eye pupil adjusts to imaginary light. 

Psychological Science, 25(1), 188–197. 

https://doi.org/10.1177/0956797613503556 

Lam, B. L., Thompson, H. S., & Corbett, J. J. (1987). The prevalence of simple 

anisocoria. American Journal of Ophthalmology, 104(1), 69–73. 

https://doi.org/10/gmhpbt 

Larson, M. D. (2008). Mechanism of opioid-induced pupillary effects. Clinical 

Neurophysiology, 119(6), 1358–1364. https://doi.org/10/chkw8r 

Loewenfeld, I. E., & Lowenstein, O. (1993). The pupil: Anatomy, physiology, and 

clinical applications (Vol. 2). Wiley-Blackwell. 

Lowenstein, O., Feinberg, R., & Loewenfeld, I. E. (1963). Pupillary movements during 

acute and chronic fatigue: A new test for the objective evaluation of tiredness 

(Vol. 65). Federal Aviation Agency, Office of Aviation Medicine. 

Lüdtke, H., Wilhelm, B., Adler, M., Schaeffel, F., & Wilhelm, H. (1998). Mathematical 

procedures in data recording and processing of pupillary fatigue waves. Vision 

Research, 38(19), 2889–2896. https://doi.org/10/d8fwmf 

Marmarou, A., Lu, J., Butcher, I., McHugh, G. S., Murray, G. D., Steyerberg, E. W., 

Mushkudiani, N. A., Choi, S., & Maas, A. I. (2007). Prognostic value of the 

Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-

hospital and on enrollment: An IMPACT analysis. Journal of Neurotrauma, 

24(2), 270–280. 



 

 

   

37 

Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of 

Cognition, 1(1). https://doi.org/10/gfkmbc 

Mathôt, S., Fabius, J., Van Heusden, E., & Van der Stigchel, S. (2018). Safe and sensible 

baseline correction of pupil-size data. Behavior Research Methods, 50(1), 94–

106. 

Mathôt, S., Grainger, J., & Strijkers, K. (2017). Pupillary responses to words that convey 

a sense of brightness or darkness. Psychological Science, 0956797617702699. 

Mathôt, S., Melmi, J.-B., Van der Linden, L., & Van der Stigchel, S. (2015). The mind-

writing pupil: Near-perfect decoding of visual attention with pupillometry. 

Journal of Vision, 15(12), 176. https://doi.org/10.1167/15.12.176 

McLaughlin, D. J., Zink, M., Gaunt, L., Spehar, B., Van Engen, K., Sommers, M. S., & 

Peelle, J. E. (2021). Pupillometry reveals cognitive demands of lexical 

competition during spoken word recognition in young and older adults. 

Mirman, D. (2014). Growth Curve Analysis and Visualization Using R (1st ed.). 

Chapman & Hall. 

Morad, Y., Lemberg, H., Yofe, N., & Dagan, Y. (2000). Pupillography as an objective 

indicator of fatigue. Current Eye Research, 21(1), 535–542. 

https://doi.org/10/bqc9tn 

Morris, S. K., Granholm, E., Sarkin, A. J., & Jeste, D. V. (1997). Effects of schizophrenia 

and aging on pupillographic measures of working memory. Schizophrenia 

Research, 27(2–3), 119–128. https://doi.org/10/bk3fzf 



 

 

   

38 

Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. 

(2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. 

Human Brain Mapping, 35(8), 4140–4154. https://doi.org/10.1002/hbm.22466 

Nasreddine, Z. S., Phillips, N. A., Badirian, V., Charbonneau, S., Whitehead, V., Collin, 

I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, 

MoCA: A Brief screening tool for mild cognitive impairment. Journal of the 

American Geriatrics Society, 53(4), 695–699. 

Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. 

(2012). Rational regulation of learning dynamics by pupil-linked arousal systems. 

Nature Neuroscience, 15(7), 1040–1046. https://doi.org/10.1038/nn.3130 

Nichols, A. L., & Maner, J. K. (2008). The Good-Subject Effect: Investigating Participant 

Demand Characteristics. The Journal of General Psychology, 135(2), 151–166. 

https://doi.org/10/c2gcm5 

O’Shea, H., & Moran, A. (2018). To go or not to go? Pupillometry elucidates inhibitory 

mechanisms in motor imagery. Journal of Cognitive Psychology, 30(4), 466–483. 

https://doi.org/10/gmgb5v 

Papesh, M. H., & Goldinger, S. D. (2015). Pupillometry and Memory: External Signals 

of Metacognitive Control. In Handbook of Biobehavioral Approaches to Self-

Regulation (pp. 125–139). Springer, New York, NY. https://doi.org/10.1007/978-

1-4939-1236-0_9 



 

 

   

39 

Papesh, M. H., Goldinger, S. D., & Hout, M. C. (2012). Memory strength and specificity 

revealed by pupillometry. International Journal of Psychophysiology, 83(1), 56–

64. https://doi.org/10/bw977q 

Peysakhovich, V., Vachon, F., & Dehais, F. (2017). The impact of luminance on tonic 

and phasic pupillary responses to sustained cognitive load. International Journal 

of Psychophysiology, 112, 40–45. 

Piquado, T., Isaacowitz, D., & Wingfield, A. (2010). Pupillometry as a measure of 

cognitive effort in younger and older adults. Psychophysiology, 47(3), 560–569. 

https://doi.org/10.1111/j.1469-8986.2009.00947.x 

Recarte, M. Á., Pérez, E., Conchillo, Á., & Nunes, L. M. (2008). Mental Workload and 

Visual Impairment: Differences between Pupil, Blink, and Subjective Rating. The 

Spanish Journal of Psychology, 11(2), 374–385. https://doi.org/10/gmjb35 

Reilly, J., Kelly, A., Kim, S. H., Jett, S., & Zuckerman, B. (2018). The human task-

evoked pupillary response function is linear: Implications for baseline response 

scaling in pupillometry. Behavior Research Methods, 1–14. 

Reilly, J., Zuckerman, B., Kelly, A., Flurie, M., & Rao, S. (2020). Neuromodulation of 

cursing in American English: A combined tDCS and pupillometry study. Brain 

and Language, 206, 104791. https://doi.org/10.1016/j.bandl.2020.104791 

Rengstorff, R. H. (1994). Vision and ocular changes following accidental exposure to 

organophosphates. Journal of Applied Toxicology, 14(2), 115–118. 

https://doi.org/10/dnv74r 



 

 

   

40 

Rollins, M. D., Feiner, J. R., Lee, J. M., Shah, S., & Larson, M. (2014). Pupillary effects 

of high-dose opioid quantified with infrared pupillometry. Anesthesiology, 121(5), 

1037–1044. https://doi.org/10/gmhnzg 

Rossetti, H. C., Lacritz, L. H., Hynan, L. S., Cullum, C. M., Van Wright, A., & Weiner, 

M. F. (2017). Montreal Cognitive Assessment Performance among Community-

Dwelling African Americans. Archives of Clinical Neuropsychology, 32(2), 238–

244. https://doi.org/10.1093/arclin/acw095 

Schneider, M., Leuchs, L., Czisch, M., Sämann, P. G., & Spoormaker, V. I. (2018). 

Disentangling reward anticipation with simultaneous pupillometry/fMRI. 

Neuroimage, 178, 11–22. https://doi.org/10/gdxffm 

Siegle, G. J., Ichikawa, N., & Steinhauer, S. (2008). Blink before and after you think: 

Blinks occur prior to and following cognitive load indexed by pupillary responses. 

Psychophysiology, 45(5), 679–687. https://doi.org/10/bc3fc3 

Sireci, S. G. (1998). The Construct of Content Validity. Social Indicators Research, 

45(1), 83–117. https://doi.org/10/bx7dg3 

Steinhauer, S. R., & Hakerem, G. (1992). The pupillary response in cognitive 

psychophysiology and schizophrenia. Annals of the New York Academy of 

Sciences, 658(1), 182–204. 

Thomas, L. E., & Lleras, A. (2007). Moving eyes and moving thought: On the spatial 

compatibility between eye movements and cognition. Psychonomic Bulletin & 

Review, 14(4), 663–668. https://doi.org/10/bzs8j6 



 

 

   

41 

Tryon, W. W. (1975). Pupillometry: A survey of sources of variation. Psychophysiology, 

12(1), 90–93. 

Tsukahara, J. S., & Engle, R. W. (2021). Is baseline pupil size related to cognitive 

ability? Yes (under proper lighting conditions). Cognition, 211, 104643. 

https://doi.org/10/gjcgv3 

Tsukahara, J. S., Harrison, T. L., & Engle, R. W. (2016). The relationship between 

baseline pupil size and intelligence. Cognitive Psychology, 91, 109–123. 

https://doi.org/10.1016/j.cogpsych.2016.10.001 

Tun, P. A., McCoy, S., & Wingfield, A. (2009). Aging, hearing acuity, and the attentional 

costs of effortful listening. Psychol Aging, 24(3), 761–766. https://doi.org/2009-

13203-027 [pii] 10.1037/a0014802 [doi] 

Van Engen, K. J., & McLaughlin, D. J. (2018). Eyes and ears: Using eye tracking and 

pupillometry to understand challenges to speech recognition. Hearing Research, 

369, 56–66. https://doi.org/10/gfqg8t 

Van Gerven, P. W., Paas, F., Van Merriënboer, J. J., & Schmidt, H. G. (2004). Memory 

load and the cognitive pupillary response in aging. Psychophysiology, 41(2), 167–

174. https://doi.org/10/cp66gp 

Veneman, C. E., Gordon-Salant, S., Matthews, L. J., & Dubno, J. R. (2013). Age and 

Measurement Time-of-Day Effects on Speech Recognition in Noise. Ear and 

Hearing, 34(3), 288–299. https://doi.org/10/gmjcs9 



 

 

   

42 

Wainstein, G., Rojas-Libano, D., Medel, V., Alnæs, D., Kolskår, K. K., Endestad, T., 

Laeng, B., Ossandon, T., Crossley, N., Matar, E., & Shine, J. M. (2021). The 

ascending arousal system promotes optimal performance through meso-scale 

network integration in a visuospatial attentional task. Network Neuroscience, 1–

32. https://doi.org/10/gmw45x 

Wang, C.-A., & Munoz, D. P. (2015). A circuit for pupil orienting responses: 

Implications for cognitive modulation of pupil size. Current Opinion in 

Neurobiology, 33, 134–140. 

Wilhelm, B., Wilhelm, H., Lüdtke, H., Streicher, P., & Adler, M. (1998). Pupillographic 

assessment of sleepiness in sleep-deprived healthy subjects. Sleep, 21(3), 258–

265. 

Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). 

Controlling low-level image properties: The SHINE toolbox. Behavior Research 

Methods, 42(3), 671–684. https://doi.org/10/dxddqm 

Winn, M. B., Wendt, D., Koelewijn, T., & Kuchinsky, S. E. (2018). Best practices and 

advice for using pupillometry to measure listening effort: An introduction for 

those who want to get started. Trends in Hearing, 22, 2331216518800869. 

Zahodne, L. B., Manly, J. J., Smith, J., Seeman, T., & Lachman, M. E. (2017). 

Socioeconomic, health, and psychosocial mediators of racial disparities in 

cognition in early, middle, and late adulthood. Psychology and Aging, 32(2), 118–

130. https://doi.org/10.1037/pag0000154 



 

 

   

43 

Zavagno, D., Tommasi, L., & Laeng, B. (2017). The Eye Pupil’s Response to Static and 

Dynamic Illusions of Luminosity and Darkness. I-Perception, 8(4), 

2041669517717754. https://doi.org/10.1177/2041669517717754 

Zekveld, A. A., Heslenfeld, D. J., Johnsrude, I. S., Versfeld, N. J., & Kramer, S. E. 

(2014). The eye as a window to the listening brain: Neural correlates of pupil size 

as a measure of cognitive listening load. Neuroimage, 101c, 76–86. 

https://doi.org/10.1016/j.neuroimage.2014.06.069 

Zekveld, A. A., & Kramer, S. E. (2014). Cognitive processing load across a wide range 

of listening conditions: Insights from pupillometry. Psychophysiology, 51(3), 

277–284. 

Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2010). Pupil response as an indication of 

effortful listening: The influence of sentence intelligibility. Ear and Hearing, 

31(4), 480–490. https://doi.org/10/cx648q 

Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2011). Cognitive load during speech 

perception in noise: The influence of age, hearing loss, and cognition on the pupil 

response. Ear and Hearing, 32(4), 498–510. https://doi.org/10/cfgzkx 

 

 

 

 

 

 

 

 

 



 

 

   

44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Jamie Reilly1,2, Bonnie Zuckerman1,2, and Alexandra E. Kelly3
	Authors’ Note:  This chapter was supported in part by a grant from the National Institute on Deafness and Other Communication Disorders (R01 DC0103063 to JR). Address correspondence to Jamie Reilly, PhD (reillyj@temple.edu)
	1Eleanor M. Saffran Center for Cognitive Neuroscience, Philadelphia, Pennsylvania USA
	2Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania USA
	3Department of Psychology, Drexel University, Philadelphia, Pennsylvania USA

